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In order to investigate the relationship between the thermodynamics and
kinetics of protein aggregation, we compared the solubility of proteins with
their aggregation rates. We found a significant correlation between these
two quantities by considering a database of protein solubility values
measured using an in vitro reconstituted translation system containing
about 70% of Escherichia coli proteins. The existence of such correlation
suggests that the thermodynamic stability of the native states of proteins
relative to the aggregate states is closely linked with the kinetic barriers that
separate them. In order to create the possibility of conducting computa-
tional studies at the proteome level to investigate further this concept, we
developed a method of predicting the solubility of proteins based on their
physicochemical properties.

Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.
Protein folding and aggregation are processes in
competition in the cellular environment.1–5 When
proteins fail to fold, they tend to form aggregates,
whose presence is associated with a variety of human
conditions, including Alzheimer's and Parkinson's
diseases.1,2,6,7 Since it is becoming clear that the amino
acid sequences ofproteins encodenot just their folding
but also their aggregation, there is great interest in
identifying the amino acid code responsible for the
aggregation process.8–16 Considerable advances have
been made in establishing the relationship between
the physicochemical properties of proteins and their
aggregation rates, thus supporting the view that the
kinetics of protein aggregation are encoded in the
amino acid sequences.8–12 Since, however, it has also
been suggested that the native states of proteins are
metastable against aggregation,17,18 it is important to
understand also how the thermodynamics of protein
dresses:
g.eu.
vector machine.
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aggregation are specified in the sequence. A
difficult challenge for these studies is the scarcity
of proteome-level data on protein solubility, which
makes it difficult to analyze the relationship
between the relative stability of the native and
aggregate states.
To address this problem, we took advantage of a

recent study in which the solubility of about 70% of
the Escherichia coli proteins was experimentally
measured in vitro. 19 By analyzing a range of
methods to predict protein aggregation rates, the
authors of that study found that protein solubility is
not correlated with the intrinsic aggregation rates,
that is, the rates of conversion between the unfolded
and aggregated states of proteins.19 They thus
suggested that a quantitative analysis of protein
solubility requires the consideration of the protec-
tion against aggregation provided by the native
state.19 By taking up such as suggestion, we
consider here whether the solubility of proteins
correlates with the aggregation propensity of pro-
teins, when the aggregation is estimated from the
native state.12 The data set employed in this work is
y Elsevier Ltd. All rights reserved.
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Fig. 1. Correlation between
experimental19 and predicted solu-
bility scores: (a) aggregation rates
from native states, calculated using
the Zyggregator method;12 (b) solu-
bility scores, calculated using the
CCSOL method discussed in this
work; and (c) maximal expression
level scores, calculated using the
CamEL method.20 The output of
the CamEL method is a discrete
variable ranging from 1 to 6 (here
normalized to 1).
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the one provided by Niwa et al.,19 and protein
identifiers were collected from the Ensembl Bacteria
Database†. Our results indicate that protein aggre-
gation rates and protein solubility values are highly
correlated if the propensity of aggregation is
calculated from the folded state12 (Fig. 1a).
†http://bacteria.ensembl.org/index.html
These results are intriguing since the aggregation
propensity scores provide a prediction of the rate at
which proteins aggregate, but they do not represent
a direct prediction of the critical concentration of
proteins, that is, their solubility, which is the
parameter measured by Niwa et al.19 The finding
that protein aggregation rates are correlated with
critical concentrations suggests the existence of a
link between the thermodynamics and kinetics of
protein aggregation, which would arise because the
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solubility of proteins depends on the relative
stability of the folded and aggregate states, whereas
the aggregation rates depend on free-energy barriers
between these states. It is worth observing that,
also in the case of protein folding, the rate at which
this process takes place has been linked with the
thermodynamic properties of the folded and
unfolded states.21,22

In order to investigate further this phenomenon,
we developed a predictor of protein solubility based
on the physicochemical properties of amino acid
sequences. For each sequence within the data set, we
calculated the profiles of 28 physicochemical prop-
erties collected through a literature search (Fig. 2a
and Supplementary Material). Physicochemical pro-
files were generated by a window of seven amino
Fig. 2. Comparison of the average values of 28 amino acid
work.19 (a) Physicochemical profiles are calculated for each pro
“tail” data sets. (b) Graphical representation of the propertie
discriminated sequences are removed for a new round of ana
negative selection is applied to a data set [(+) positive selectio
selection, (− −) negative selection and steep gradient].
acids sliding from the N- to the C-terminus of the
protein sequence. We split the original data set of
3043 proteins19 into three subsets containing the
most soluble (1081 entries, “head set”), least soluble
(1078 entries, “tail set”) and all the other proteins
(884 entries), respectively.
In a first step, we built a support vector machine

(SVM) to identify properties that allow the best
discrimination between the “head” and “tail” sets.
This SVM recognizes the main features that differ-
entiate two groups of protein sequences and uses
this criterion to select them. In the selection process,
the SVM compares each protein of one data set with
all the proteins in the other data set. Proteins scoring
above a given threshold (80%) are discriminated and
removed from the original data set for the next
propensity scales for the E. coli proteins considered in this
perty, and comparisons are made between the “head” and
s selected during eight iterations: in each cycle, the best-
lysis. Plus and minus signs indicate whether a positive or
n, (+ +) positive selection and steep gradient, (−) negative

image of Fig. 2
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iterative round (Fig. 2b). After eight iterations, only a
small number of entries (200) remained un-discrim-
inated, and a number of physicochemical character-
istics (11) were collected (Fig. S1). We found that
disorder, coil and hydrophilicity propensities best
discriminate between “head” and “tail” (Fig. 2a and
Supplementary Material). It should be mentioned
that polar residues are associated with high coil and
disorder propensities: P, E, S, K and Q are the most
disorder-prone residues,23 and N, D, G, H and P
are the most coil-prone ones.21-27 For this reason,
coil and disorder are selected in our method as
determinants of protein solubility. In agreement with
this finding, we observe that disorder predictions
carried out with DisEMBL REM465 (i.e., of missing
assignment of electron density) show a correlation of
45% with the experimental solubility measured by
Niwa et al.19 (data not shown). Nevertheless, it is
worth mentioning that disordered proteins contain
more hydrophilic regions but still retain potential for
aggregation because their hydrophobic regions can-
not be buried to the solvent and are consequently
available for interaction.12

In a second step, we combined a number of
physicochemical properties into a SVM to predict
protein solubility. In order to reduce the number
of variables and identify those that give the

strongest signal, we generated
P
k

11
k

� �
= 211 = 2048

SVMs (all the combinations of 11 scales) and ranked
them according to their performances upon cross-
validation. In our cross-validation, one subsample of
the original data set is retained for testing, and the
remaining nine are used for training the algorithm.
The cross-validation process was repeated 10 times
with each of the 10 subsamples used exactly once as
the validation data. At the end of the process, we
identified six properties: coil/disorder, 21-27

hydrophobicity,25 hydrophilicity,26 β-turn,27,28 α-
helix27 (Fig. 1b and Supplementary Material). The
method is available online‡.
Further insight about the relationship between

solubility and aggregation rates (Fig. 1a) is provided
by considering the correlation that was recently
reported between protein aggregation rates and
mRNA expression levels, which arises as a conse-
quence of the stringent requirement for proteins to
remain soluble in order to function at the concentra-
tions at which they are expressed in the cell.17,29–33

On the basis of this observation, we demonstrated
that it is possible to estimate the solubility of
recombinant human proteins in E. coli from the
corresponding maximal mRNA expression levels.20

Here, we used this approach to provide an alterna-
tive prediction of the solubility scores provided by
‡http://tartaglialab.crg.cat/ccsol.html
Niwa et al.19 finding a very high correlation (Fig. 1c).
Taken together, these results suggest that kinetics
and thermodynamics may play equally important
roles in determining the stability of native states
against aggregation in living systems, which is
consistent with the view that the native forms of
proteins can be only metastable.17,18

In summary, in this work, we have developed a
method to predict the solubility of proteins, which,
used in combination with existing methods for
predicting aggregation rates, should open the
possibility of carrying out proteome-level studies
of the relationship between thermodynamics and
kinetics of protein aggregation.
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