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providing salient categorical information in greater detail than the 
officially reported category. Finally, we show how the database can 
be used for unbiased discovery of research trends, and we docu-
ment the remarkable increase in funding for research on micro-
RNA biology from 2007 to 2009. Changes in topics associated with 
this burgeoning area demonstrate a transition in the nature of the 
research, from basic cellular and molecular biology to investiga-
tions of complex physiological processes and disease diagnoses.  

In each case, the machine-learned topics are robustly corre-
lated with funding by specific NIH Institutes, highlighting the 
importance of the underlying categories to the NIH. The pat-
terns elucidated in this framework are consistent with Institute 
policies, but obtaining similar information in the absence of the 
current database would require extensive exploration of Institute 
websites, followed by time-consuming research on appropriate 
keywords for queries of specific categories. Our database offers 
an alternative approach that enables rapid and reproducible 
retrieval of meaningful categorical information.  

To ensure transparent and accurate representations of the algo-
rithm-derived topics, we provide extensive contextual informa-
tion derived from the documents associated with each topic, in 
a format conducive to spot checks and to detailed examination 
for cases requiring precise categorical distinctions. Additionally, 
we implemented a new technique for automatically assess-
ing topic quality using statistics of topic word co-occurrence 
(Supplementary Methods), which we used for curating the data-
base to identify poor quality topics.  

Our use of this graphing algorithm is somewhat different from 
previous gene expression analyses and scientometric studies based 
on journal citation linkages (see Supplementary Methods for ref-
erences). We assessed the information-retrieval capabilities of the 
graphs and found that they performed well relative to the document 
similarity measures that served as inputs. Notably, rather than form-
ing isolated clusters, in this case the algorithm produced a lattice-like 
structure, in which clusters are linked by strings of aligned docu-
ments whose topical content is jointly relevant to the clusters at either 
end of each string (Supplementary Fig. 1). In addition to providing 
extra ‘subcluster’ resolution of content that falls between clusters, 
this lattice-like framework formed a logical organizational structure, 
merging the local, intermediate and global levels of the graph.

The categories and clusters represented in this database are 
comprehensive and thus provide reference points from which 
various information requirements can be addressed by users with 
divergent interests and needs. Perhaps more importantly, they 
provide a basis for discovery of interrelationships among con-
cepts and documents that otherwise would be obscure.  

Note: Supplementary information is available on the Nature Methods website.
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Predicting protein associations with 
long noncoding RNAs
To the Editor: Only a small fraction of the human transcrip-
tome (∼1%) encodes proteins1, but a large portion of transcripts 
is long noncoding RNAs (lncRNAs) and is an unexplored com-
ponent of mammalian genomes2. Here we introduce a method 
to perform large-scale predictions of protein-RNA associations. 
Our algorithm, ‘fast predictions of RNA and protein interactions 
and domains at the Center for Genomic Regulation, Barcelona, 
Catalonia’ (catRAPID), evaluates the interaction propensities of 
polypeptide and nucleotide chains using their physicochemical 
properties. The algorithm is freely available at http://big.crg.cat/
gene_function_and_evolution/services/catrapid.

We trained catRAPID on 592 protein-RNA pairs available 
in the Protein Data Bank to discriminate interacting and non-
interacting molecules using only information contained in their 
sequences (Supplementary Table 1). Secondary structure propen-
sities accounted for 72% of catRAPID ability to predict protein-
RNA associations, followed by hydrogen bonding (58%) and van 
der Waals (26%) contributions. Occurrence of hairpin loops in 
nucleotide sequences and presence of helical elements in polypep-
tide sequences positively correlated with interaction propensities. 
Protein and RNA binding sites had higher interaction propensities 
than other regions in complexes (Fig. 1a, Supplementary Methods 
and Supplementary Tables 2 and 3).

We validated our algorithm on a large collection of protein asso-
ciations with lncRNAs3, the NPInter dataset (Supplementary 
Methods and Supplementary Table 4). Using catRAPID we cor-
rectly predicted 89% of experimentally supported interactions 
linked to physical evidence of binding (Fig. 1b). We observed less 
significant performance (P = ~0.1) for interactions inferred from 
indirect evidence (Supplementary Methods). To test catRAPID’s 
ability to identify non-interacting molecules, we generated random 
lists of RNA associations with proteins involved in DNA and pro-
tein-binding (DNA BP and protein BP datasets, respectively; Fig. 1c 
and Supplementary Table 5). We predicted interactions only for 
<40% of cases, which suggests that these associations are unlikely to 
take place (RNA BP dataset; Fig. 1c and Supplementary Table 5). 
With regard to random associations with RNA-binding proteins, 
we observed slightly higher interaction propensities (~52%), which 
indicates occurrence of spurious binding.

To validate the ability of catRAPID to identify binding regions, 
we analyzed the human ribonuclease mitochondrial RNA process-
ing (MRP) complex4 (Supplementary Methods). The MRP assem-
bly comprises ten protein subunits: hPop1, hPop5, Rpp14, Rpp20, 
Rpp21, Rpp25, Rpp29, Rpp30, Rpp38 and Rpp40. We predicted 
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Supplementary Fig. 4). Strong interaction 
propensity was predicted only for Suz12 at the 
3′ domain of HOTAIR, but no experimental 
data are available for comparison. We also 
performed predictions on portions 4R and 
2R in the A region of XIST5. Our calculations 
indicated high interaction propensities for 
Ezh2 and suggested that the nucleation cen-
ter is probably the 4R region. Suz12 had low 
interaction propensities with 2R and 4R, in 
agreement with experimental data5, indicat-
ing that its binding might require the entire A 
region (Supplementary Fig. 3).

In conclusion, prediction of lncRNAs func-
tion is generally hampered by poor sequence 
homology and lack of interaction data. We 
expect that catRAPID will guide experimen-
tal approaches and facilitate a deeper under-
standing of the role of lncRNAs in post-tran-
scriptional regulatory networks.

Note: Supplementary information is available on the Nature Methods website.
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Figure 1 | Performance, validation and applications 
of catRAPID. (a) Interaction propensity rank of 
binding regions in the positive set (410 interacting 
pairs). Error bars, s.d. (b) Performance on NPInter 
dataset (405 interacting pairs) measured by 
discriminative power (DP). (c) Performance 
(discriminative power) on training (positive and 
negative sets are lists of interacting and non-
interacting protein-RNA pairs) and indicated test 
sets. Error bars, s.d. (d) P3 stem RNA in complex 
with Rpp20 and Rpp25 homologs (yeast MRP 
structure). (e) Predictions of interactions between 
human MRP RNA and Rpp20. Interaction propensity 
is measured in procedure defined units (p.d.u.).  
(f) Interaction propensity for binding regions 
of Ezh2 with XIST A region. (g) Predictions of 
associations between PCR2 complex and XIST A 
region. Analysis of 4R region is displayed. Regions 
are listed by nucleotide positions. (h) Interaction 
propensity for binding regions of Ezh2 with 5′ 
HOTAIR. (i) Predictions of interactions between 
PCR2 complex with 5′ and 3′ domains of HOTAIR.

that Rpp20 binds the P3 stem as reported in the crystal structure of 
the MRP complex yeast homolog (Protein Data Bank code: 3IAB,  
Fig. 1d,e and Supplementary Methods). Rpp14, Rpp30, Rpp40 and 
hPop5 were predicted to be low- or non-interacting, in agreement 
with experimental evidence4. By contrast, Rpp21, Rpp25, Rpp29 
and Rpp38 had high propensity to interact with RNA, as is the case 
in vitro4 (Supplementary Fig. 1 and Supplementary Table 6). We 
also analyzed the human RNase P that shares proteins with the 
MRP system4. All the subunits were predicted to bind RNA, and 
Rpp20, Rpp21, Rpp25, Rpp29 and Rpp38 had the highest interac-
tion propensities (Supplementary Fig. 2).

Additionally, we calculated the interaction propensities of human 
XIST and HOTAIR lncRNAs with the chromatin-modifying poly-
comb repressive complex 2 (PRC2). In agreement with experimen-
tal evidence5,6 we predicted Ezh2, Eed, Suz12 and Rbap48 to bind 
the A region of XIST and the 5′ domain of HOTAIR with confidence 
>90% (Fig. 1f–i and Supplementary Figs. 3 and 4). The major-
ity of PRC2 components showed poor propensity to bind the 3′ 
domain of HOTAIR, confirming previous observations6 (Fig. 1i and 
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