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Supplementary Figure 1 Predictions of interactions in the human MRP complex. The 
Interaction propensity score (P) is reported, as well as percentages for positive (R) and 
negative (B) contributions. See also Supplementary Table 6.  
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Supplementary Figure 2 Prediction of interactions in the human RNase P complex. 
The Interaction propensity score (P) is reported, as well as percentages for positive 
(R) and negative (B) contributions. Please refer to the relative section for the 
interpretation of data. 
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Supplementary Figure 3 Predictions of interactions between PRC2 protein 
components and Xist regions. The Interaction propensity score (P) is reported, as 
well as percentages for positive (R) and negative (B) contributions.  
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Supplementary Figure 4 Predictions of interactions between PRC2 protein 
components and HOTAIR regions. The Interaction propensity score (P) is reported, 
as well as percentages for positive (R) and negative (B) contributions.  
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2ZKR 3CW1 3I8I 2GYA 3BBO 1JJ2 2ZJP 1FFK 1GIY 1P85 
3JYV 2GTT 3HUW 3BBN 1C9S 2FTC 2ZKQ 2RKJ 2CZJ 2D6F 
3A2K 2ZNI 2WW9 1UN6 1J2B 2NQP 1J5A 3KTW 3EPH 2R8S 
2DER 2CT8 1SER 1G59 1ASY 2ZZM 2ZUE 2DU3 1U0B 1J1U 
1H3E 1F7U 1EIY 1C0A       

 
Supplementary Table 1 PDB codes of non-redundant protein-RNA complexes 
selected to train catRAPID. See section Training Set for more details. 
 
 
 
 

RNA Property Coefficients 
Secondary Structure  0.23 
Polarity -0.18 
Hydrophobicity -0.18 

 
Protein Property Coefficients 
Alpha Helix  0.27 
Beta Sheet -0.03 
Turn / Coil  0.10 
Polarity  0.40 
Hydrophobicity -0.22 

 
Supplementary Table 2 Coefficients associated with protein and RNA properties. 
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Supplementary Table 3 Parameters of the interaction matrix I. 
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NPInter Class # Interactions 
The ncRNA binds the protein 239 

The protein as a factor affects the ncRNA's function 88 

The ncRNA is regulated by the protein 22 

Special linkages between the ncRNA and the Protein 8 

Genetic interaction between the ncRNA gene and the protein 13 

The ncRNA regulates the mRNA 24 

The ncRNA indirectly regulates a gene (DNA) 9 

The ncRNA as a factor affects the protein's function 2 
 
Supplementary Table 4 Composition of the NPInter dataset. Indirect evidences of 
protein-RNA interactions are associated with the following classes: “The ncRNA is 
regulated by the protein”, “Special linkages between the ncRNA and the Protein”, 
“Genetic interaction between the ncRNA gene and the protein”,  “The ncRNA 
regulates the mRNA” and “The ncRNA indirectly regulates a gene (DNA)”. See 
section Test Set for more details. 
 
 
 
 

 
 
 
 
 
 
 
 

Supplementary Table 5 Composition of the Protein-binding (Protein BP), DNA-
binding, RNA-binding (RNA BP) datasets. For each test set, we generated random 
associations with RNA molecules present in the training set. See also section Test Set. 

Dataset # Proteins # Interactions 
Protein BP 62 12000 
RNA BP 65 12000 
DNA BP 5410 130000 
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Supplementary Table 6 Human MRP complex: Comparison between experimental data and 
catRAPID predictions. The strength of interactions is represented as “++”, strong; “+”, weak; “-”, 
absent; “NA”, not available. Experimental evidences can be found in the work by Welting and 
collaborators20, except where differently indicated. *No comparison is possible with experimental 
data due to lack of information. **Predictions support what shown for the archeal homolog 
PhoPop521. 
 
 

catRAPID Predictions Experimental Evidences Protein 
subunits P3 stem P12 stem P3 stem P12 stem 

Accordance References 

Rpp14 - - - - YES  
 

Rpp20 ++ + ++ + YES 13,14 

Rpp21 + + + + YES  

Rpp25 + + ++ + YES 13,14 

Rpp29 ++ ++ ++ ++ YES  

Rpp30 - - NA NA YES 15 

Rpp38 ++ ++ + ++ YES  

Rpp40 - - NA NA *  

hPop5 + - - -    YES ** 15 
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Supplementary Methods 

 

Training Set 

 

Structural data were collected in March 2010 and consisted of 858 RNA-protein 

complexes (8367 protein-RNA pairs) available from the RCSB databank 

(http://www.pdb.org/). A cutoff of 7 Å for physical contacts was employed to 

discriminate between interacting and non-interacting protein-RNA pairs. The cutoff 

was decided according to the average resolution of structural complexes and led to 

define a positive dataset containing 7409 interacting protein-RNA pairs and a 

negative set containing 958 non-interacting protein-RNA pairs. The CD-HIT tool 

(http://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi) was used to filter out RNA 

and protein sequences with identities higher than 80% and 60%, respectively. After 

redundancy removal, the database contained 410 interacting (“Positive set”) and 182 

non-interacting (“Negative set”) protein-RNA pairs. With regards to the composition of 

the Positive and Negative sets, protein-RNA associations were grouped into five 

functional classes: “Ribosome and protein synthesis”, “Splicing”, “Transcription”, 

“tRNA synthesis and Viral RNA assemblies”, which account for 70%, 10%, 8%, 12% 

and 10% of the entire training set.  Performances were estimated using a ten-fold 

cross-validation approach, in which a representative set of each functional class was 

sampled. In the analysis, the data set of interactions was randomly partitioned into 

ten subsamples requiring the condition that all the partitions carry the same 

distribution of functional classes. One subsample was retained for testing, and the 

remaining nine were used for training the algorithm. The cross-validation process 

was repeated ten times with each of the ten subsamples used exactly once as the 

validation data. The significance of our predictions was evaluated by calculating p-

values (two-tail t-test). See also section Discriminative Power. 

 

We tested catRAPIDʼs performance on the identification of binding regions. For each 

protein-RNA complex in the redundant set, we calculated interaction propensities of 

all possible associations between amino acid and nucleotide chains and ranked their 

scores from lowest to highest. Protein binding sites were top-ranked in 87% of cases 

while RNA binding sites were ranked in 75% of cases. Simultaneous identification of 
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both protein and RNA binding regions was top-ranked in 62% of cases. Indeed, these 

results underline the extreme accuracy in identifying interaction sites (Fig. 1a).  

 

 

Physico-chemical Properties  

 

Secondary Structure Propensities. The secondary structure of the RNA molecule 

is predicted from its nucleotide sequence using the Vienna package1 (including the 

algorithms RNAfold, RNAsubopt and RNAplot). Although the average predictive 

power of the RNAfold algorithm is 70%, lower performances are expected for long 

non-coding RNAs because these transcripts are poorly characterized. To increase 

the amount of information that can be extracted from secondary structure predictions, 

we adopted a strategy that exploits the generation of ensembles produced with the 

RNAsubopt algorithm. The sampling of structures was performed with probabilities 

estimated through Boltzmann weighting and stochastic backtracking in the partition 

function. Six model structures, ranked by energy, are used as input for catRAPID. For 

each model structure, the RNAplot algorithm was employed to generate secondary 

structure coordinates. Using the coordinates we defined the “secondary structure 

occupancy” by counting the number of contacts made by each nucleotide within the 

different regions of the chain. High values of secondary structure occupancy indicate 

that base pairing occurs in regions with high propensity to form hairpin-loops, while 

low values are associated with junctions or multi-loops. The secondary structure of 

proteins was taken into account in our model by calculating the Chou-Fasman2 and 

Deleage-Roux3 propensities for turn, β-strand and  α-helical elements. As the 

average predictive power of these models is around 60%, we preferred to combine 

together the individual propensities to have better performances. The correlation 

between interaction propensities and secondary structure contributions is 73% 

(Interaction Propensities). 

 

Hydrogen-Bonding Propensities. The structural information on purine and 

pyrimidine contacts was extracted from a set of 41 non-redundant protein-RNA 

complexes4. Both the number and the frequency of hydrogen-bond contacts are used 

in our method. With respect to proteins, we used Granthamʼs and Zimmermanʼs 

scales5,6 to estimate the propensity of amino acids to form hydrogen bonds. Other 

propensity scales were disregarded because they showed lower predictive power. 
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The correlation between interaction propensities and hydrogen bonding contributions 

is 58% (Interaction Propensities). 

 

 

Van der Waalsʼ Propensities. The information on purine and pyrimidine contacts 

was taken from a set of 41 protein-RNA complexes4. Both the number and the 

frequency of van der Waalsʼ contacts were used in catRAPID. With respect to 

proteins, we employed Kyte-Dolittle and Bull-Breese scales7,8 to estimate the 

propensity to form van der Waalsʼ contacts. Other propensity scales were 

disregarded because they showed lower predictive power. The correlation between 

interaction propensities and Van der Waalsʼ contributions is 26%  (estimated with a 

ten-fold cross-validation). 

 

Fitting coefficients for Secondary Structure, Hydrogen-Bonding and Van der Waalsʼ 

Contributions are reported in Supplementary Table 2. 

 
Interaction Propensity 

 

Secondary structure, hydrogen bonding and van der Waals propensities were 

combined together into the interaction profile: 

 

€ 

Φx = αS Sx +αH Hx +αW Wx        (1) 

 

We used the symbol 

€ 

 to indicate the profile associated with a specific physico-

chemical property. For example, the van der Waalʼs profile of a protein is denoted by 

€ 

Wp  and contains the van der Waalʼs contributions of each amino acid: 

 

€ 

Wp =Wp 1,  Wp 2,...,  Wp L         (2) 

 

Where 

€ 

L  is the proteinʼ s sequence length. Similarly, 

€ 

H  represents the hydrogen 

bonding profile and 

€ 

S  the secondary structure profile.  The variable 

€ 

x  is used to 

distinguish between RNA (

€ 

x  =

€ 

r ) and protein (

€ 

x  =

€ 

p) profiles. 
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In order to deal with molecules of different length, we approximated each propensity 

profile using plane-waves: 

 

€ 

˜ Φ x
k =

2
length

Φx
n cos π

length
n +

1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ k +

1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥              k = 0,1,... L

n=0

length

∑ −1  (3) 

 

The number of plane waves employed to approximate each profile is L = 50 as the 

discriminative power does not improve by increasing L. 

 

The following condition was employed to derive the interaction matrix 

€ 

I: 
 

€ 

I :  max ˜ Φ r  I ˜ Φ p   for (r, p) ∈  {positive set}     (4) 

 

The interaction propensity score 

€ 

π = ˜ Φ r  I ˜ Φ p 	
   is defined as the inner product 

between the protein profile 

€ 

˜ Φ r  and the RNA profile 

€ 

˜ Φ p , weighted by the 

interaction matrix 

€ 

I: 
 

€ 

 π = ˜ Φ r  I ˜ Φ p =  ˜ Φ r
l  Il,m ˜ Φ p

m
l ,m

∑ = ˜ Λ l,ml ,m
∑ 	
   	
   	
   	
   	
   (5)	
   

 

The interaction propensity matrix 

€ 

Λ l,m 	
  is obtained by applying Eq. (3) to	
  

€ 

˜ Λ l,m . 

 

The interaction matrix 

€ 

I 	
  is given by applying Eq. (3) to the parameters 

€ 

˜ I n,k  reported in 

Supplementary Table 3. 

 

 

 

Discriminative Power 

 

In order to evaluate the ability of catRAPID to distinguish between interacting and 

non-interacting RNA-protein associations, we introduced the concept of 

discriminative power (dp): 
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€ 

dp =  
ϑ(π i −  π n )

n
∑

i
∑

ϑ(π i −  π n )
n
∑

i
∑ +ϑ(π n −π i)

=1− (I∩N)     (6) 

 

Where 

€ 

π i indicates the interaction propensity of an interacting RNA-protein pairs, 

€ 

πn  

represents the interaction propensity of non-interacting molecules, 

€ 

I is the score 

distribution associated with the positive set and 

€ 

N	
  is	
  the score distribution associated 

with the negative set. The definition of 

€ 

π  is given in the section Interaction 

Propensity. The function 

€ 

ϑ(π i −  π n )  is 1 if 

€ 

π i −πn > 0 and 0 otherwise. According 

to the definition given in Eq. (6), the discriminative power ranges from 0% to 100%. 

The significance of predictions was evaluated by calculating p-values (two-tail t-test). 

 

With regards to catRAPIDʼs performances, the discriminative power associated with 

the non-redundant training dataset is 78%. The discriminative power associated with 

the redundant training dataset is 90%. If a consistent number of protein or RNA 

sequences are moved from the negative to the positive set (or vice-versa), the 

distribution of interaction propensities associated with the positive and negative sets 

tend to overlap. When the number of sequences transferred from the negative to the 

positive set equals half the size of the positive set, dp is 42%. If Fourierʼs coefficients 

associated with RNA or protein sequences are scrambled (i.e., their order is modified 

in a random way), dp is < 50%. If we use the unitary matrix in Eq. 3, the algorithm 

shows a dp of 65% on the training set, which increases up to 71% when the NPInter 

dataset is also considered.  

 

 

Interaction Propensity 

	
  
Using the score distribution 

€ 

fn  associated with the negative training set, we 

calculated the probability 

€ 

p(v) = p(π ≤ v) that the score 

€ 

π  takes values less than or 

equal to 

€ 

v  (interaction probability): 

 

€ 

p(v) = fn (π)dπ
−∞

v

∫          (7) 
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Similarly, using the score distribution 

€ 

f p  of the positive training set, we estimated the 

probability that the score 

€ 

π  takes values more than or equal to 

€ 

v  (non-interaction 

probability):  

 

€ 

n(v) = f p (π)dπ
v

∞

∫           (8) 

 

The two probabilities 

€ 

p(v)  and 

€ 

n(v) were then combined together to define the 

interaction propensity 

€ 

P(v) : 
 

 

€ 

P(v,x) =
x[1− n(v)]p(v)

[1− n(v)]p(v)[1− x]+ x[1− p(v)]n(n)
     (9) 

 

where 

€ 

x = 0.5 

 

 

 

Test Sets  

 
The NPInter database9 (http://www.bioinfo.org.cn/NPInter/) was used to evaluate the 

ability of the algorithm to predict interactions between proteins and long non-coding 

RNAs. RNA sequences were obtained from the fRNAdb database 

(http://www.ncrna.org/frnadb/). We excluded micro-RNAs from our analysis because 

their size significantly differs from that of molecules used for training.  The long non- 

coding database contains 405 interactions from 6 model organisms. Only for a 

subset of the NPInter database direct physical evidence for protein-RNA interactions 

is reported (Fig. 1b; class “The ncRNA binds the protein” accounting for 59% of the 

NPInter dataset and class  “The protein as a factor affects the ncRNA's function” 

accounting for 22% of the NPInter dataset). We also estimated the significance of our 

predictions on the entire database by calculating p-values (two-tail t-test): 0.04 for 

class “The ncRNA is regulated by the protein”, 0.21 for class “Special linkage 

between the ncRNA and the Protein” 0.11 for class “Genetic interaction between the 

ncRNA gene and the protein”, 0.03 for class “The ncRNA regulates the mRNA”), 0.20 

for class “The ncRNA indirectly regulates a gene” and 0.6 for class “The ncRNA as a 
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factor affects the proteinʼs function”. The average discriminative power is 85% and 

was evaluated by comparing the interaction propensities of the different NPInter 

classes with the interaction propensities of the non-redundant negative set (and 

increases up to 90% by comparing with the redundant negative set).  

 

 

The Non-Nucleid-acid-Binding database NNBP10 was employed to evaluate the 

ability of catRAPID to identify proteins that have little propensity to interact with RNA 

molecules.  The original set comprises 246 proteins, among which 62 were selected 

after a search on the Uniprot database (http://www.uniprot.org/) for molecules that 

are exclusively involved in protein-protein interactions. A total of 12000 random 

associations were generated with RNA sequences of the positive set. The 

discriminative power of the algorithm was evaluated by comparing the interaction 

propensities of the negative set (Training Set) with those of the random list. The 

significance of predictions was evaluated by calculating p-values (two-tail t-test) 

(Supplementary Table 4). 

 

DNA-binding (DNA BP) and RNA-binding (RNA BP) proteins were obtained from the 

Uniprot database. DNA BP were collected by searching for molecules that bind “with 

DNA and not with RNA” (7535 hits), while RNA BP were obtained by selecting 

molecules that bind “with RNA and not with DNA” (84 hits). The CD-HIT tool was 

used to filter out sequences with identities higher than 60%. After filtering we counted 

a total of 5410 entries for DNA BP and 65 entries for RNA BP). Random associations 

were generated with RNA sequences present in the positive training set (130000 

associations for DNA-binding and 12000 for RNA-binding, respectively). The 

discriminative power of the algorithm was evaluated by comparing interaction 

propensities of the negative set (Training Set) with those of the random lists. The 

significance of predictions was evaluated by calculating p-values (two-tail t-test) 

(Supplementary Table 5).  

 

The Human MRP and RNase P Complexes 

 

The human MRP complex is comprised of ten protein subunits (hPop1, hPop5, 

Rpp14, Rpp20, Rpp21, Rpp25, Rpp29, Rpp30, Rpp38 and Rpp40) and one RNA unit 

(266 nucleotides). The RNA shows a catalytic core domain with evolutionary 
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conserved structural features in domain I (P1-P3 helices), and a variable portion 

named domain II (P8, P9, P12, eP19 helices) with unknown function. The human 

RNase P complex shares protein components with the MRP system. It includes one 

RNA unit (344 nucleotides) that possesses analogous structural features compared 

to the MRP RNA, with a more extended P12 stem and additional P7, P10, P11 

elements. The two complexes display different catalytic activities: MRP mediates the 

processing of rRNA precursors while RNAse P is required for processing pre-tRNAs 

in functional tRNAs molecules. 

	
  
Several studies were carried out to identify protein-RNA interactions in human, yeast 

and bacterial MRP complexes, using a wide variety of techniques11. The most 

detailed picture of the human system was given by Welting and coworkers12 who 

demonstrated, using GST pull-down data, that hPop1, Rpp20, Rpp21, Rpp25, Rpp29 

and Rpp38 directly interact with RNA, whereas hPop5 and Rpp14 are part of the 

assembly but do not contact the transcript. Interaction data for Rpp30 and Rpp40 are 

missing because of the poor solubility of the proteins. It has been observed that 

Rpp20 and Rpp25 bind strictly to the P3 helix, whereas Rpp29 mediate additional 

contacts in the P12 stem by associating with more than one RNA region. The 

interaction between RNA, Rpp20 and Rpp25 was confirmed by the very recent 

release of the crystal structure of the MRP RNA P3 stem in complex with yeast 

homologues of Rpp20 and Rpp2513.   

	
  
Comparisons between our predictions and experimental evidences can be 

summarized as follows (Supplementary Table 6, Supplementary Fig. 1): i) Rpp20 

and Rpp21 binds the P3 stem that can be considered a nucleation center. The 

predicted binding region for Rpp20 - MRP RNA corresponds to the one observed in 

the crystal structure of yeast MRP RNA P3 portion in complex with the yeast 

homolog POP713. ii) Rpp29 and Rpp38 mediate multiple interactions between P3 

helix and P12 stem. These results are in complete agreement with the known 

interaction map of Rpp29 which connects domain I and II12. iii) Rpp25 is predicted to 

have lower propensity to interact with RNA. This finding can be explained by 

considering that Rpp25 is able to recognize the P3 element of MRP RNA only after 

association with Rpp2014. iv) Rpp14, Rpp30 and Rpp40 are predicted to be non-

interacting with MRP RNA, in agreement with what was reported in literature12. v) 

hPop5 is predicted to mediate weak interactions with the MRP RNA in the P3 area. 

Nature Methods: doi.10.1038/nmeth.1611



	
   16	
  

This finding is in accordance with activity assays conducted on the archeal homolog 

PhoPop515. 

	
  
With regards to the RNase P system, similar interaction propensities were found for 

Rpp20, Rpp21, Rpp25, Rpp29 and Rpp38 (Supplementary Fig. 2). In general, an 

increase in the intensity of signals is observed together with an enhanced binding 

preference for the P3 stem region. This finding could be explained by considering the 

different substrate specificity and catalytic activity of the two RNA-protein assemblies. 

 

 
Association of the PRC-2 with Xist and HOTAIR  
 
The Polycomb Repressive Complex is comprised of four protein units: Ezh2, Eed, 

Suz12 and Rbap48. Ezh2 and Eed are predicted by catRAPID to contact 

approximately the same RNA regions (330-680 and 330-530 for Xist A Region; 1-240 

and 1-220 for the 5ʼ domain of HOTAIR; Supplementary Fig. 3), which is well in 

agreement with the ability of these proteins to heterodimerize16. Eed shows similar 

binding propensities with both 2R (431-531; Supplementary Fig. 3) and 4R (371-

531; Supplementary Fig. 3) segments, as shown by immuno-precipitation assays17. 

According to previous experimental evidences18 and in agreement with our 

predictions on repeat regions, Ezh2 can be regarded as the main RNA-binding 

subunit, representing the catalytic core of the PCR2 complex. Higher propensity to 

bind 2R is found for Rbap48, which might arise from its involvement in mediating 

protein-protein interactions in addition to RNA binding19. 

 

 

Databases used for MRP, Xist and HOTAIR 

 

RNA sequences (human MRP RNA, FR355912; human RNase P RNA, FR174566) 

were downloaded from the fRNAdb database (http://www.ncrna.org/frnadb/). Protein 

sequences were retrieved from Uniprot database (hPop5, Q969H6; Rpp14, O95059; 

Rpp20, O75817; Rpp21, Q9H633; Rpp25, Q9BUL9; Rpp29, O95707; Rpp30, 

P78346; Rpp38, P78345; Rpp40, O75818). The catRAPID algorithm was employed 

to predict the interaction propensity of all protein subunits except for hPop1 whose 

large size does not fit with our computational requirements. The three-dimensional 

structure of the MRP P3 domain in complex with POP6-POP7 was displayed using 
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the UCSF Chimera visualization tool (http://www.cgl.ucsf.edu/chimera/). The crystal 

structure of the yeast MRP P3 domain in complex with the POP6-POP7 protein 

heterodimer (PDB code: 3iab) was released in July 2010. 

 

The RNA sequences of human Xist (M97168.1) and HOTAIR (DQ926657.1) were 

downloaded from the NCBI database. Regions of interest were selected on the basis 

of available experimental data (sequence numbering is reported): Xist A Region, 330-

796; Xist 4R, 371-531; 5ʼ HOTAIR, 1-300; 3ʼ HOTAIR, 1500-2146. The catRAPID 

algorithm was used to predict the interaction propensity of the four PRC2 protein 

subunits, whose Uniprot IDs are: Ezh2, Q15910; Eed, O75530; Suz12, Q15022; 

Rbap48, Q09028. 
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