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ABSTRACT

Protein–RNA interactions are implicated in a num-
ber of physiological roles as well as diseases, with
molecular mechanisms ranging from defects in RNA
splicing, localization and translation to the forma-
tion of aggregates. Currently, ∼1400 human proteins
have experimental evidence of RNA-binding activ-
ity. However, only ∼250 of these proteins currently
have experimental data on their target RNAs from
various sequencing-based methods such as eCLIP.
To bridge this gap, we used an established, compu-
tationally expensive protein–RNA interaction predic-
tion method, catRAPID, to populate a large database,
RNAct. RNAct allows easy lookup of known and pre-
dicted interactions and enables global views of the
human, mouse and yeast protein–RNA interactomes,
expanding them in a genome-wide manner far be-
yond experimental data (http://rnact.crg.eu).

INTRODUCTION

RNA-binding proteins (RBPs) are key in RNA splicing,
processing, export, localization and regulation of transla-
tion and are implicated in a number of pathologies in hu-
mans. Examples include heterogeneous and life-threatening
genetic disorders, such as amyotrophic lateral sclerosis (1),
spinocerebellar ataxia and retinitis pigmentosa, among oth-
ers (2,3). Human proteins encoded by 1393 genes currently
have experimental evidence of RNA-binding activity (4–
6). These proteins contain one or more RNA-binding re-
gions, either in the form of canonical globular domains or of
more recently discovered, intrinsically disordered RNA in-
teraction regions (7,8). Additionally, protein–protein inter-
action interfaces and enzymatic active sites are sometimes
employed for RNA binding (4,9). Protein–RNA interac-
tions form an intricate network, and RNAs play structural

roles in many types of phase-separated biological conden-
sates, such as stress granules (10).

However, the number of RBPs for which the identity
of their interaction partners is known is much lower. Two
hundred fifty Homo sapiens RBPs currently have high-
throughput experimental data on the identity of their tar-
get RNAs (11,12), obtained mostly by various sequencing-
based methods such as eCLIP, iCLIP, HITS-CLIP, PAR-
CLIP and RIP-seq. Much smaller datasets are available for
Mus musculus (38 RBPs (12)), Drosophila melanogaster (29
RBPs from RIP-seq (13)) and Saccharomyces cerevisiae (69
RBPs from RIP-Chip (14)). A comprehensive collection of
CLIP data is available in the recently expanded POSTAR
database (12), previously called CLIPdb, which also in-
cludes motif-based target predictions for a set of human and
mouse RBPs (88 and 82, respectively).

To bridge the gap between the 1393 known RBPs and
the 250 for which we have experimental knowledge of
interaction partners, we used an established, experimen-
tally validated (15,16) protein–RNA interaction predic-
tion method, catRAPID (17–19), to generate proteome-
and transcriptome-wide sets of interaction predictions. Our
database now covers the H. sapiens, M. musculus and S.
cerevisiae genomes and contains a total of 5.87 billion pair-
wise interactions. This reflects nearly 120 years of compu-
tation time on the Centre for Genomic Regulation’s high-
performance computing cluster, and for the first time pro-
vides all possible protein–RNA interactions in these species.

RNAct makes available our genome-wide protein–RNA
interaction predictions and combines them with powerful
and intuitive search functionality, including pairwise search
for sets of proteins and RNAs. The display is enriched with
useful annotation, including transcript support level (TSL)
and APPRIS classification for isoforms and RNA subcel-
lular localization from the RNALocate database. Known
RBPs as well as interactions confirmed by large-scale exper-
iments from the ENCODE project are clearly highlighted.
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MATERIALS AND METHODS

Proteomes

Proteomes were obtained from UniProt (20). Sequence files
containing all canonical sequences from each organism’s
reference proteome were obtained from the UniProt FTP
server (these exclude the ‘additional’ isoform transcripts for
a given UniProt accession). This resulted in successful in-
teraction predictions for 20 778 canonical human proteins
(proteome UP000005640 from UniProt release 2017 10),
22 080 canonical mouse proteins (proteome UP000000589
from UniProt 2018 01, strain C57BL/6J) and 5 963 canon-
ical yeast proteins (proteome UP000002311 from UniProt
2018 06, strain ATCC 204508 / S288c).

Transcriptomes

Transcriptomes were obtained from GENCODE (for hu-
man and mouse) (21) and Ensembl (for yeast) (22). GEN-
CODE ‘basic’ RNAs are a representative subset prioritiz-
ing full-length protein-coding transcripts over partial or
non-coding transcripts for a given gene. The GENCODE
release used for human is Release 27 (genome assembly
GRCh38.p10), and both the ‘basic’ (98 608 transcripts with
successful interaction predictions) and ‘non-basic’ (100 722
transcripts) subsets were obtained for full coverage of the
human GENCODE transcriptome. These sets are kept sep-
arate for performance reasons, and the protein view cur-
rently does not show non-basic human RNAs (except in
the pairwise search). For mouse, GENCODE release M16
(genome assembly GRCm38.p5) was used, retaining only
the ‘basic’ subset (76 532 transcripts, ∼58% of the mouse
GENCODE transcriptome) due to resource and computa-
tion time constraints. For yeast, all coding and non-coding
transcripts from the Ensembl 92 release (April 2018) were
included (7029 transcripts with successful interaction pre-
dictions).

All FASTA sequence files used are available for download
in the RNAct Download section. A small number of these
sequences were excluded from RNAct due to limitations of
the catRAPID algorithm: short or extreme length (proteins
≤50 aa or >14 507 aa, RNAs ≤50 nt or >28 227 nt), or
unsuccessful RNA secondary structure prediction using the
ViennaRNA package which catRAPID relies on (23).

Interaction predictions (catRAPID maximum fragment
score)

To compute the interaction propensity scores, we used the
catRAPID approach (17) with the fragmentation procedure
(18,19) and normalized for sequence lengths (19). For each
protein–RNA pair, the fragments with the maximum inter-
action propensity score are used to assess overall binding
ability (Figure 1A). The catRAPID score shows a receiver
operating characteristic (ROC) area under the curve (AUC)
of 0.78 with high-confidence eCLIP data (212 256 interac-
tions with human GENCODE ‘basic’ RNAs, replicated in
at least one cell line studied in ENCODE and in all repli-
cates in each).

When including all eCLIP interactions regardless of
replication (723 881 interactions for GENCODE ‘basic’

RNAs), this AUC is still 0.76. Normalizing the prediction
score by sequence lengths, similarly to a previous work (19),
we found that the predictive performance decreases slightly
(to an AUC of 0.71 on the high-confidence interactions, and
of 0.70 on all). This indicates a size effect, potentially due to
the RNAse digestion step in CLIP protocols. We stress that
the method was trained on X-ray and NMR data, and that
its performance on the experimental CLIP data reflects its
predictive power (Figure 1B). RNAct displays the length-
normalized prediction scores, with raw catRAPID scores
available for download upon request.

Experimental interaction data (ENCODE eCLIP)

Experimental interaction data covering 119 human RBPs
using eCLIP in the HepG2 and K562 cell lines (170 total
experiments) were obtained from the ENCODE Project in
narrowPeak format (11,24,25). This represents the largest
single dataset of experimental protein–RNA interaction
data currently available. Additional experimentally deter-
mined interactions covering 69 RBPs in yeast using RIP-
Chip were obtained from a compilation by Mittal et al. (14).

Protein and RNA annotation

A very recent census of proteins with experimental evi-
dence of RNA-binding activity in human (1393 known RBP
genes), mouse (1914 known RBPs) and yeast (1273 known
RBPs) was used to flag proteins as known RBPs in RN-
Act (4). Additionally, an older census of 1542 RBPs, which
used features such as domain composition and known roles
of proteins, was used to flag a further 658 human RNAct
proteins as known RBPs (3). Overall, 5097 proteins in RN-
Act are flagged as ‘Known RBPs’, with 2031 of these being
human.

In addition to annotated, known RBPs, we obtained
predictions of RNA-binding activity from SONAR (26)
(1923 predicted human RBPs) and catRAPID signature
(27). catRAPID signature was used with a threshold score
of 0.735, equivalent to a z-normalized value of 1 (one stan-
dard deviation above the mean) for the score distribution
for known human RBPs from Hentze et al. (4), resulting in
1268 predicted human RBPs. Overall, 2779 human proteins
in RNAct are flagged as ‘Predicted RBPs’, 1721 of these be-
ing novel (not ‘known’).

RNA subcellular localization was obtained from the
RNALocate database with very minor curation, remov-
ing a handful of ambiguous or non-subcellular terms
(28). Basic protein annotation including gene symbols, full
protein names and sequence length was obtained from
UniProt. RNA annotation including transcript symbols
(e.g. ‘TARDBP-201’), length, biotype (e.g. ‘protein coding’,
‘lincRNA’), GENCODE ‘basic’ status and TSL were ob-
tained from GENCODE and Ensembl. Principal (primary)
and alternative isoform classifications were obtained from
APPRIS (29).

Technical aspects

RNAct is implemented in PHP on an Apache server using
a MariaDB SQL backend, storing ∼450 GB of pre-sorted
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tables. The interaction predictions were calculated over sev-
eral months on a shared set of 80 HP BL460c nodes with
two Intel Xeon E5-2680 2.70 GHz CPUs and 120 GB of
usable DDR3-1600 memory each, using 8 cores per cluster
job. These are part of the CRG’s high-performance comput-
ing cluster. The open-source Bootstrap library was used to
ensure correct display on devices of any screen size, includ-
ing mobile devices. Several icons were included from Font
Awesome and the Noun Project (please see the About sec-
tion of the website for attributions). RNAct collects no data
on its users.

USING RNAct

Search functionality

RNAct is built for extreme ease and speed of real-world
use. The landing page (Search) contains a single search box
which allows entry of any protein or RNA identifier (e.g.
‘tdp43’ or ‘hotair’). Unless the term is highly ambiguous
(e.g. ‘ataxin’), most searches resolve to a single gene sym-
bol, giving a choice of species and protein or RNA on the
disambiguation page that follows (Figure 2). Table 1 shows
a list of realistic search terms that are resolved success-
fully by RNAct. This is achieved by ‘guessing’ the identi-
fier type, moving outwards from specific to more ambiguous
options, if necessary. There is no built-in limit to the number
of search results returned, allowing searches for e.g. ‘RNA
binding’, ’vault RNA’ or ‘lysine demethylase’.

This design minimizes tedious input elements (e.g. a
species dropdown box) and instead facilitates discovery and
comparison across protein families and species. Matching
fields are highlighted in green, which allows intuitive selec-
tion of the intended match (e.g. the RNA transcript in ques-
tion when searching for ‘ENST00000237536’) while leaving
room for additional useful choices (e.g. the corresponding
protein for transcript ‘ENST00000237536’). The search box
is available in the top right of every page and is easily navi-
gated to by pressing the tab key.

Protein view

Once a protein of interest is selected, the Protein view (Fig-
ure 3) shows a list of RNA interaction partners prioritized
by prediction score. Alternatively, the view can be sorted by
experimental results simply by clicking on the experimental
columns. The length, GENCODE ‘basic’ status, APPRIS
classification and TSL (22) for each transcript are shown,
allowing isoform quality assessment. Links out to Ensembl
and UniProt for additional transcript and protein informa-
tion respectively are provided (with an arrow symbol).

RNA view

Once an RNA is selected, the RNA view shows a list of
predicted protein interaction partners prioritized by pre-
diction score. Alternatively, the view can be sorted by ex-
perimental results simply by clicking on the experimental
columns. Interactions with experimental evidence are high-
lighted (14,24), as are known (3,4) and predicted (26,27)
RBPs. Links out to Ensembl and UniProt for additional in-
formation are provided.

Advanced pairwise search

A common use case for RNAct is the prediction of interac-
tions within a set of proteins and RNAs, allowing the rapid
prioritization of candidates for validation, and the analysis
of specific pathways or systems. The Pairwise search feature
allows entry of a set of proteins and a set of RNAs, either in
multiple lines or separated by commas, and allows any iden-
tifier types which the Search function can resolve, including
ambiguous queries (e.g. for ‘lysine demethylase’). The only
limitation is the total number of pairs queried, which is cur-
rently limited to 10 000 (allowing entry of e.g. 100 proteins
and 100 RNAs).

Browse proteins or RNAs

These views list all proteins or RNAs contained in RN-
Act, i.e. the human, mouse and yeast reference proteomes
and transcriptomes. In the Browse Proteins view, proteins
are listed in order of availability of experimental interac-
tion data (e.g. from eCLIP), evidence of RNA-binding ac-
tivity (known or predicted RBPs), species and gene sym-
bol. This allows the easy retrieval of known RBPs, par-
ticularly those with experimental interaction data. In the
Browse RNAs view, transcripts are sorted by species, gene
symbol, GENCODE ‘basic’ status, APPRIS classification,
TSL and descending transcript length. This means that the
best-supported transcript for a given gene will appear first.

Download

All RNAct protein–RNA interaction prediction data for
human, mouse and yeast are available from the Download
page. For human, the predictions are split into two sets for
performance reasons: GENCODE ‘basic’ transcripts (cov-
ering a representative subset of 98 608 RNAs), and ‘non-
basic’ transcripts making up the rest of the transcriptome.
Both files can be concatenated for a full view of the hu-
man protein–RNA interactome, covering 20 778 proteins
and 199 330 RNA transcripts. For mouse, only the GEN-
CODE ‘basic’ transcripts are currently available, while the
full annotated transcriptome is available for yeast. The RN-
Act predictions are licenced under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
Licence (CC BY-NC-SA 4.0). A complete set of supporting
tables containing protein and RNA annotations, identifier
mappings used internally for searching, and the experimen-
tal data used (e.g. eCLIP) is available on the Download page
as well. We intend to complete and add predictions for ad-
ditional species such as C. elegans and D. melanogaster.

About

The About page gives more details on the algorithm and
datasets used, provides literature references and answers
what we expect to be frequently asked questions, including
contact details.

DISCUSSION

RNAct provides an easy-to-use view of protein–RNA in-
teractions in model organisms. It is intended to grow, both
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Figure 1. (A) Interaction propensity scores for the background (sampled from slightly over 2 billion human protein–RNA pairs; light red) and positive set
(212 256 high-confidence protein–RNA interactions revealed by eCLIP; cyan). The z-score reported in the results pages is computed on the right-skewed
blue distribution, with the solid cyan line indicating the mean and the dashed line indicating a z-score of 1 (one standard deviation above the mean).
(B) The area under the ROC curve of 0.78 (0.72 upon length normalization) indicates the predictive performance of the catRAPID method on recent
high-confidence experimental eCLIP data from the ENCODE project.

Figure 2. Search results (disambiguation page). This page allows selection of the protein or RNA of interest across the 3 species currently in RNAct.

in terms of the number of species covered (currently hu-
man, mouse and yeast) and in terms of the experimental
datasets provided. We hope our database will be particu-
larly useful for studying gene regulatory events and net-
works at the post-transcriptional level (30). In addition
to protein-centric datasets, recently published interactomes
for the MALAT1, NEAT1 and NORAD long non-coding
RNAs (lncRNAs) from a mass spectrometry-based method
make it likely that additional RNA-centric datasets will be
published in the near future (31). We are actively imple-

menting features such as flagging interactions which are
experimentally validated at low throughput, and allowing
users to add articles supporting a given interaction. Inter-
actions supported by the presence of an RNA-binding do-
main and its corresponding motifs are also intended to be
highlighted in future (32). Additionally, we are consider-
ing to report the predicted binding regions for each inter-
action from catRAPID, similar to a CLIP binding profile,
although this would require us to upgrade our server infras-
tructure due to the terabytes of data involved for all pair-
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Figure 3. The Protein view. This page shows a list of potential RNA interaction partners prioritized by catRAPID length-normalized prediction score.
Alternatively, the page can be sorted by eCLIP experimental results by clicking on the ‘P-value’ or ‘fold change’ columns. Useful information on the protein
of interest, such as whether it is a known or predicted RBP and whether experimental interaction data (e.g. from eCLIP experiments) exists for it is shown
at the top of this view, and transcript annotation and quality information are shown as badges for each RNA. Links out to Ensembl and UniProt are
provided. Other links lead to the protein’s or RNA’s view within RNAct.

Table 1. Examples of realistic search terms successfully resolved by RNAct

Real-world search term

Retrieved
gene
symbol(s) Retrieved description Retrieved via

‘annexin 11’ ANXA11 Annexin A11 Partial description match
‘ews’ EWSR1 RNA-binding protein EWS Gene symbol alias
ENSG00000089280 FUS RNA-binding protein FUS Ensembl gene identifier
FUS MOUSE FUS RNA-binding protein FUS UniProt identifier
P35637 FUS RNA-binding protein FUS UniProt accession
‘pur �’ PURA Transcriptional activator protein Pur-� Partial description match
‘smn’ SMN1 Survival motor neuron protein Partial symbol match

SMNDC1 Survival of motor neuron-related-splicing
factor 30

‘tdp43’ TARDBP TAR DNA-binding protein 43 Gene symbol alias, ignoring punctuation
(via TDP-43)

wise interactions. In summary, RNAct provides easy access
to genome-scale protein–RNA interaction predictions with
useful supporting annotation and experimental interaction
evidence.
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(2017) FUS affects circular RNA expression in murine embryonic
stem cell-derived motor neurons. Nat.Commun., 8, 14741.

2. Castello,A., Fischer,B., Hentze,M.W. and Preiss,T. (2013)
RNA-binding proteins in Mendelian disease. Trends Genet., 29,
318–327.

3. Gerstberger,S., Hafner,M. and Tuschl,T. (2014) A census of human
RNA-binding proteins. Nat. Rev. Genet., 15, 829–845.

4. Hentze,M.W., Castello,A., Schwarzl,T. and Preiss,T. (2018) A brave
new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol., 19,
327–341

5. Kramer,K., Sachsenberg,T., Beckmann,B.M., Qamar,S., Boon,K.-L.,
Hentze,M.W., Kohlbacher,O. and Urlaub,H. (2014)
Photo-cross-linking and high-resolution mass spectrometry for
assignment of RNA-binding sites in RNA-binding proteins. Nat.
Methods, 11, 1064–1070.

6. Conrad,T., Albrecht,A.-S., de Melo Costa,V.R., Sauer,S.,
Meierhofer,D. and Ørom,U.A. (2016) Serial interactome capture of
the human cell nucleus. Nat. Commun., 7, 11212.

7. Castello,A., Fischer,B., Frese,C.K., Horos,R., Alleaume,A.-M.,
Foehr,S., Curk,T., Krijgsveld,J. and Hentze,M.W. (2016)
Comprehensive identification of RNA-Binding domains in human
cells. Mol. Cell, 63, 696–710.

8. Marchese,D., de Groot,N.S., Lorenzo Gotor,N., Livi,C.M. and
Tartaglia,G.G. (2016) Advances in the characterization of
RNA-binding proteins. Wiley Interdiscip. Rev. RNA, 7, 793–810.

9. Castello,A., Hentze,M.W. and Preiss,T. (2015) Metabolic enzymes
enjoying new partnerships as RNA-Binding proteins. Trends
Endocrinol. Metab., 26, 746–757.

10. Jain,S., Wheeler,J.R., Walters,R.W., Agrawal,A., Barsic,A. and
Parker,R. (2016) ATPase-Modulated stress granules contain a diverse
proteome and substructure. Cell, 164, 487–498.

11. Sloan,C.A., Chan,E.T., Davidson,J.M., Malladi,V.S., Strattan,J.S.,
Hitz,B.C., Gabdank,I., Narayanan,A.K., Ho,M., Lee,B.T. et al.
(2016) ENCODE data at the ENCODE portal. Nucleic Acids Res.,
44, D726–D732.

12. Hu,B., Yang,Y.-C.T., Huang,Y., Zhu,Y. and Lu,Z.J. (2017) POSTAR:
a platform for exploring post-transcriptional regulation coordinated
by RNA-binding proteins. Nucleic Acids Res., 45, D104–D114.

13. Stoiber,M.H., Olson,S., May,G.E., Duff,M.O., Manent,J., Obar,R.,
Guruharsha,K.G., Bickel,P.J., Artavanis-Tsakonas,S., Brown,J.B.
et al. (2015) Extensive cross-regulation of post-transcriptional
regulatory networks in Drosophila. Genome Res., 25, 1692–1702.

14. Mittal,N., Scherrer,T., Gerber,A.P. and Janga,S.C. (2011) Interplay
between posttranscriptional and posttranslational interactions of
RNA-binding proteins. J. Mol. Biol., 409, 466–479.

15. Marchese,D., Botta-Orfila,T., Cirillo,D., Rodriguez,J.A., Livi,C.M.,
Fernández-Santiago,R., Ezquerra,M., Martı́,M.J., Bechara,E.,
Tartaglia,G.G. et al. (2017) Discovering the 3′ UTR-mediated
regulation of alpha-synuclein. Nucleic Acids Res., 45, 12888–12903.

16. Cirillo,D., Blanco,M., Armaos,A., Buness,A., Avner,P., Guttman,M.,
Cerase,A. and Tartaglia,G.G. (2017) Quantitative predictions of

protein interactions with long noncoding RNAs. Nat. Methods, 14,
5–6.

17. Bellucci,M., Agostini,F., Masin,M. and Tartaglia,G.G. (2011)
Predicting protein associations with long noncoding RNAs. Nat.
Methods, 8, 444–445.

18. Cirillo,D., Agostini,F., Klus,P., Marchese,D., Rodriguez,S.,
Bolognesi,B. and Tartaglia,G.G. (2013) Neurodegenerative diseases:
quantitative predictions of protein-RNA interactions. RNA, 19,
129–140.

19. Agostini,F., Cirillo,D., Bolognesi,B. and Tartaglia,G.G. (2013)
X-inactivation: quantitative predictions of protein interactions in the
Xist network. Nucleic Acids Res., 41, e31.

20. The UniProt Consortium (2017) UniProt: the universal protein
knowledgebase. Nucleic Acids Res., 45, D158–D169.

21. Harrow,J., Frankish,A., Gonzalez,J.M., Tapanari,E., Diekhans,M.,
Kokocinski,F., Aken,B.L., Barrell,D., Zadissa,A., Searle,S. et al.
(2012) GENCODE: the reference human genome annotation for The
ENCODE Project. Genome Res., 22, 1760–1774.

22. Zerbino,D.R., Achuthan,P., Akanni,W., Amode,M.R., Barrell,D.,
Bhai,J., Billis,K., Cummins,C., Gall,A., Girón,C.G. et al. (2018)
Ensembl 2018. Nucleic Acids Res., 46, D754–D761.
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