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Discovery of protein–RNA networks

Davide Cirillo,ab Carmen Maria Livi,ab Federico Agostiniab and
Gian Gaetano Tartaglia*ab

Coding and non-coding RNAs associate with proteins to perform important functions in the cell.

Protein–RNA complexes are essential components of the ribosomal and spliceosomal machinery; they

are involved in epigenetic regulation and form non-membrane-bound aggregates known as granules.

Despite the functional importance of ribonucleoprotein interactions, the precise mechanisms of

macromolecular recognition are still poorly understood. Here, we present the latest developments in

experimental and computational investigation of protein–RNA interactions. We compare performances

of different algorithms and discuss how predictive models allow the large-scale investigation of

ribonucleoprotein associations. Specifically, we focus on approaches to decipher mechanisms regulating

the activity of transcripts in protein networks. Finally, the catRAPID omics express method is introduced

for the analysis of protein–RNA expression networks.

Introduction

Recent approaches based on nucleotide-enhanced UV crosslinking
and immunoprecipitation (CLIP) identified a number of previously
unknown proteins with an RNA-binding activity.1,2 As RNA-
binding proteins (RBPs) orchestrate many post-transcriptional
events and influence gene expression by acting at various steps
of RNA metabolism,3 protein–RNA associations could be impor-
tant players in regulatory networks.4 Intriguingly, only a fraction
of the genome (i.e. about 1.4% in humans) is translated into
proteins, while 450% of the mammalian genome is predicted to

be transcribed, which suggests that a large number of RNAs might
contribute to biological processes by association with RBPs.5–7

Despite the increasing amount of high-throughput data, basic
questions regarding protein–RNA interactions remain to be
addressed: How do protein and RNA recognize each other?
Is it possible to build models to predict protein–RNA associa-
tions and exploit theoretical frameworks to investigate func-
tional and dysfunctional complexes? What are the mechanisms
that lead to formation of assemblies such as ribonucleoprotein
aggregates?

Here we present state-of-the-art experimental and computa-
tional approaches to investigate protein–RNA associations. We
describe predictive models for the characterization of ribonucleo-
protein complexes and introduce the latest developments in the
field including catRAPID omics express. Finally, we discuss future
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challenges for the prediction of RNA structure and propensity to
form ribonucleoprotein aggregates.

Quantitative approaches to detect
protein–RNA interactions

Detection of RNA targets and identification of binding sites are
usually based on in vitro and in vivo experiments such as systematic
evolution of ligands by exponential enrichment (SELEX)8 and
immunoprecipitation (IP).9,10 Although accurate, these approaches
require a considerable amount of work for the optimization of
experimental conditions:11,12

� RNA immunoprecipitation (RIP) is the most common
approach to reveal the interaction between proteins and ribo-
nucleic acids. To perform RIP, it is necessary to use an antibody
directed against the RNA-binding protein of interest to pull down
associated RNAs from cellular extracts. RNA sequences are identi-
fied using qPCR, microarrays and next-generation sequencing.13

Two relevant issues limit the application of the method: (i) the low
resolution (i.e., the binding sites cannot be identified) and high
propensity to include indirect interactions; (ii) the propensity of
protein–RNA complexes to re-assemble after cell lysis, which
might introduce artifacts.14 A RIP variant is being developed to
detect RNA interactions with nuclear chromatin. In this case, the
approach exploits a formaldehyde fixation step to lock RNA–
chromatin interactions. The crosslinking method allows identifi-
cation of indirect protein–RNA interactions as well as detection of
higher molecular weight macromolecular complexes.
� CLIP15 exploits crosslinking and nuclease digestion, enabling

stringent purification of RNA–protein complexes through size
separation by gel electrophoresis to reveal which RNAs are bound
and where on the sequence the interaction occurs. A variant of this
technique, called individual-nucleotide resolution CLIP (iCLIP),
allows detection of RNA–protein interactions with single-base
precision.16 Two key differences between CLIP and RIP are the

crosslinking and gel-purification steps. The RNA molecules in the
RNA–protein complexes are radioactively end-labeled, resolved by
SDS-PAGE and transferred to a membrane, which enables visua-
lization of the complex and ensures that no non-specific RNA is
co-purified.
� ChIRP (chromatin isolation by RNA purification), CHART

(capture hybridization analysis of RNA targets) and RAP (RNA
antisense purification) exploit biotinylated oligonucleotides com-
plementary to the RNA of interest as a way to pull down associated
proteins.17,18 Mass spectrometry and next-generation sequencing
are employed to identify proteins associated with RNA and
genomic locations at which these interactions occur.

The field of protein–RNA interaction is evolving rapidly, thanks
to high-throughput technologies16 and the basic principles regu-
lating the formation of ribonucleoprotein complexes are starting to
be elucidated. Nevertheless, a number of crucial questions are
emerging from experimental studies:19,20 How many proteins have
RNA binding abilities?2 Do non-canonical RNA-binding regions
occur more often than previously thought?1 What is the role of RNA
structure in macromolecular recognition?21,22 Are there special
RNA-mediated mechanisms regulating cell homeostasis?23,24

Computational methods for prediction
of protein–RNA interactions

Physico-chemical properties are particularly useful to identify
binding regions in protein and RNA molecules. A number of
algorithms, such as RNABindR,25 SCRPRED26 and the cleverSuite,27

have been trained to predict the RNA-binding propensity of
proteins using primary structure information. Recent computa-
tional methods focus on the simultaneous predictions of con-
tact regions for both protein and RNA, which is essential to
capture the specificity of ribonucleoprotein complexes.

In 2011 the catRAPID algorithm was released to predict
protein associations with coding and non-coding transcripts.28
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The method was trained on 858 non-redundant protein–RNA com-
plexes available in the Protein Data Bank (http://www.rcsb.org) to
discriminate interacting and non-interacting molecules using the
information contained in the primary structure. catRAPID was
tested on the non-nucleic-acid-binding proteins (NNBP) dataset
(area under the ROC curve of 0.92),29 the non-coding RNA and
protein interactions (NPInter) database (area under the ROC curve
of 0.88),30 and a number of interactions validated by RIP and CLIP
approaches (RNase P and MRP complexes, XIST network and RBP-
associated transcriptomes).23,24,31,32

At the same time catRAPID was published, Pancaldi and
Baehler introduced an approach based on Support Vector
Machine (SVM) and Random Forest (RF) to predict RBP targets
in yeast.33 To rationalize the factors contributing to the formation
of ribonucleoprotein complexes, the authors studied untrans-
lated region (UTR) properties, RNA structures, expression levels,
gene ontology (GO) associations and physico-chemical features.
A subset of 40 RBPs along with the corresponding experimental
targets for a total of 12 000 interactions were used to validate
the method. The findings of this analysis can be summarized as
follows:
� High nitrogen content and high isoelectric point discri-

minate RBPs from other proteins.
� A significant correlation between the RNA length and

the relative amount of glycine, isoleucine and valine has been
reported.
� Proteins with high-isoelectric points tend to bind to long

mRNAs containing a large number of stem-loops.
� RBPs sharing common targets often interact with each

other and bind to the mRNAs of their interaction partners,
building an auto-regulatory system.

To test the predictive power of the method, the authors
performed cross-validation and reported an accuracy of 0.69, an
area under the ROC curve of 0.77 and a sensitivity and specificity
around 0.7. SVM performed better than RF, but only 14 out of
76 RBP targets could be well discriminated. The approach
presented in this study is not available in the form of a web-
server/source-code, which limits its use.

In 2011, Muppirala et al. developed RPIseq to predict protein–
RNA associations using SVM and RF approaches.34 In contrast to
Pancaldi and Baehler, RPIseq predictions are based on the
primary structure. In RPIseq, RNA sequences are encoded with
the normalized frequency of nucleotide tetrads (a total of
256 characteristics), while protein sequences are represented
using a conjoint triad (a total of 343 characteristics):
� The nucleotide tetrads are 4-mer combinations of [A,C,G,U].
� The protein triad divides the 20 amino acids into 7 classes:

[A,G,V], [I,L,F,P], [Y,M,T,S], [H,N,Q,W], [R,K], [D,E] and [C].
RPIseq34 training has been performed on two different

datasets obtained from the Protein–RNA Interface Database
(PRIDB):35 a larger set containing ribosomal complexes and a
smaller set without ribosomal protein–RNA associations. On both
sets, RF outperforms SVM in both accuracy and true positive rate.
Both methods show good performances on the dataset containing
ribosomal information (SVM: accuracy = 0.87; RF: accuracy =
0.89). The algorithms have been additionally applied to predict

protein interactions with non-coding RNAs downloaded from
NPInter.30 When trained on the larger dataset, RF correctly
predicted 80% of NPInter interactions, while SVM only 66%.

In 2012, Wang et al.36 developed a sequence-based Naı̈ve
Bayes classifier to predict interactions between RBPs and non-
coding RNAs. Three different datasets were used to validate the
method: PRIDB35 with and without ribosomal complexes and
NPInter.30 The following features are used as input:
� RNA sequences are analyzed using 3-mer occurrence of

[A,C,G,U].
� Four classes [D,E], [H,R,K], [C,G,N,Q,S,T,Y] and

[A,F,I,L,M,P,V,W] are employed for amino acid frequencies.
In a 10-fold cross validation, Naı̈ve Bayes and extended Naı̈ve

Bayes classifiers obtained similar results with accuracies around
0.7, specificities of 0.9 and sensitivities of 0.3–0.4 on all the
datasets.

A major advantage of catRAPID28 and RPIseq34 is their online
availability, whereas the algorithms proposed by Pancaldi and
Baehler33 and Wang et al.36 are not publicly available.

The catRAPID modules

In the last few years, a number of algorithms have been imple-
mented to investigate mechanisms associated with protein–
RNA interactions. We focused on large-scale predictions and
comparison with experimental data generated by technologies
such as CLIP. The catRAPID modules to compute protein–RNA
interactions are available at our group webpage http://service.
tartaglialab.com/page/catrapid_group. At present, 4 algorithms
are available: catRAPID graphic, catRAPID fragments, catRAPID
strength, and catRAPID omics. Here, an overview of the different
modules is provided with related examples (Table 1).

catRAPID graphic

The contributions of secondary structure, hydrogen bonding
and van der Waals’ forces are combined together in the inter-
action profile:

~fx = aH
-

Hx + aW
-

Wx + aS
-

Sx (1)

where the variable x indicates RNA (x = r) or protein (x = p). The
-

S term designates the profile associated with secondary struc-
ture occupancy of each nucleotide (or amino acid) in the RNA
(protein) sequence:

-

S = S1,S2,. . .,Slength (2)

The RNAplot algorithm is employed to generate the secondary
structure coordinates of a number of models.37 Using the
nucleotide coordinates, we define secondary structure occupancy
by counting the number of contacts made by each nucleotide
within the different regions of the chain (Fig. 1). High values of
secondary structure occupancy indicate that base pairing occurs
in regions with high propensity to form hairpin-loops, while
low values are associated with junctions or multi-loops.
Similarly,

-

H represents the hydrogen-bonding and
-

W the van
der Waals’ profile.38 The interaction propensity p is defined as
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the inner product between Fourier transform of the protein
propensity profile ~Cp and the RNA propensity profile ~Cr weighted
by the interaction matrix I:

p = ~CpI~Cr (3)

The matrix I has been derived using a Monte carlo approach
to guarantee optimal space sampling in the parameter space.
The algorithm predicts the interaction propensity of a protein–
RNA pair reporting the discriminative power DP, which is a
measure of the interaction potential with respect to the training
sets.28 DP ranges from 0% (the case of interest is predicted to
be negative) to 100% (the case of interest is predicted to be
positive). In general, DP values above 50% indicate that the
interaction is likely to take place, whereas DPs above 75%
represent high-confidence predictions. The catRAPID graphic
module predicts the interaction propensity of a protein–RNA
pair reporting the DP and a heatmap of the interaction scores
along the sequences. The module accepts protein sequences
with a length ranging between 50 and 750 amino acids and RNA
sequences between 50 and 1200 nucleotides and is more
accurate on small transcripts.32

catRAPID strength

This module calculates the interaction of a protein–RNA pair
with respect to a reference set.32 Random associations between
polypeptide and nucleotide sequences are used for the refer-
ence set. Reference sequences have the same lengths as the pair
of interest to guarantee that the interaction strength is inde-
pendent of protein and RNA lengths.32 The interaction strength
ranges from 0% (no interaction) to 100% (strong interaction).
Interaction strengths above 50% indicate a high propensity to
bind (Fig. 2). In a previous study, it has been observed that the
strength correlates with chemical affinities,32 which suggests
that the interaction propensities can be used to estimate the

strength of association. It is important to mention that the
interaction strength provides a better estimate of the binding
than the discriminative power, as it is evaluated on a larger set
of interactions and excludes potential biases due to lengths of
protein/RNA sequences.

catRAPID fragments

Due to the conformational space of nucleotide chains, pre-
diction of RNA secondary structures is difficult when RNA
sequences are 41200 nucleotides and simulations cannot be
completed on standard processors (2.5 GHz; 4 to 8 GB memory).
To overcome this limitation, a procedure called fragmentation
was introduced. This involves the division of polypeptide and
nucleotide sequences into fragments followed by prediction of
the interaction propensities.31,32 Two types of fragmentations
are possible:
� Protein and RNA uniform fragmentation (for transcripts

smaller than 10 000 nucleotides):31 the fragmentation approach
is based on the division of protein and RNA sequences into
overlapping segments. This analysis of fragments is particularly
useful to identify protein and RNA regions involved in the
binding.23,31

� Long RNA weighted fragmentation (for transcripts larger
than 10 000 nucleotides):32 the use of RNA fragments is intro-
duced to identify RNA regions involved in protein binding
(Fig. 3). The RNALfold algorithm from the Vienna package is
employed to select RNA fragments in the range 100–200 nucleo-
tides with a predicted stable secondary structure.32

catRAPID omics

We recently developed an algorithm to allow fast calculation of
ribonucleoprotein associations in Caenorhabditis elegans, Danio
rerio, Drosophila melanogaster, Homo sapiens, Mus musculus, Rattus
norvegicus, Saccharomyces cerevisiae and Xenopus tropicalis.39

Table 1 catRAPID modules. Synopsis of catRAPID algorithms, their use and related examples23,24,31,32

Type of analysis Algorithm Features Result Examples

The protein–RNA pair of
interest is o750 aa and
1200 nt in length

catRAPID graphic
and strength
modules

The graphic module calculates the inter-
action propensity of a protein–RNA pair.
The strength module computes the
interaction propensity with respect to a
reference set.

The score will provide the
propensity to interact as well as
an estimate of the strength of
interaction

RNAse P, HOTAIR28

The protein (or RNA) is
larger than 750 aa (1200 nt)

catRAPID fragments
(protein and RNA
option)

The algorithm automatically divides the
protein and RNA sequences into frag-
ments and predicts interaction
propensities.

The binding sites of both
molecules are ranked and
visualized

FMRP, TDP4331

The RNA is 410 000 nt and
the protein o750 aa

Fragment module
(long RNA option)

The algorithm divides the protein
sequence into fragments. The entire
protein is used to calculate the inter-
action propensity against the most stable
local structures of the RNA. The inter-
action propensity is calculated between
the protein and each RNA fragment.

The binding sites of the protein
on the RNA sequence are
provided

Xist,32 hnRNP-L

What are the protein
(transcript) partners of an
RNA (protein) of interest?

catRAPID omics The algorithm computes the interaction
between a protein (or a transcript) and
the transcriptome (or a nucleotide-
binding proteome) of an organism.

Propensity, strengths and bind-
ing motifs are ranked in a table

SRSF1, FUS39

What protein–RNA inter-
actions are co-expressed
in human tissues?

catRAPID omics
express

The algorithm allows identification of
co-expressed protein and RNA pairs in
human tissues.

Propensity, strengths, binding
motifs and correlations of
expression patterns are shown

TIA1, QKI24
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The algorithm computes the interaction between a molecule
(protein or transcript) and the pre-compiled reference library

(transcriptome or proteome) for each model organism. In
addition to the interaction propensities, discriminative power
and interaction strength, the approach allows detection of RNA-
binding regions in proteins and recognition motifs in RNA
molecules. The method has been validated on Photoactivatable-
Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation
(PAR-CLIP) data and predicts associations with high significance
( p-values o 0.05).

Examples of predictions and comparison
between predictive methods

In a recent study, the catRAPID approach has been employed to
investigate the occurrence of ribonucleoprotein associations in
biological pathways.23 In this analysis, the interaction potential
was computed for 295 � 106 protein–RNA pairs reported in
Reactome40 and 65 � 106 associations available from the NCI-
Nature Pathway Interaction Database (NCI-PID).41 One of the
main results of this study is that around 1000 genes encoding
aggregation-prone and structurally disordered proteins have a
high propensity to interact with their own mRNAs (autogenous
interactions). Here, experimental evidence available in the literature
is used to compare catRAPID performances with other computa-
tional methods (Table 2)42–48 on autogenous interactions:
� Heterogeneous nuclear ribonucleoprotein L hnRNP-L is

able to induce non-sense mediated decay by binding to its own
mRNA.48 Our predictions, carried out with catRAPID fragments
(‘‘Long RNA’’ fragmentation option;32 see Methods, catRAPID
fragments) indicate that hnRNP-L interacts with its own transcript
within three different intronic regions located between exons 1–2,
6–7 and 9–10, which is in agreement with experimental evidence.48

More specifically, hnRNP-L is predicted to bind with a strong
propensity to the 30 CA cluster 6A (interaction strength = 84%;
Fig. 3; Table 2) of the hnRNP-L RNA (intron 6 of the transcript
ENST00000221419 corresponding to nucleotides 39332858–
39332174 of NC_000019.9) and not to sequence 6A (position
39332443–39332174; interaction strength = 1%; Fig. 3; Table 2),
which is in agreement with the in vitro assays performed by
Rossbach et al.48 Similarly to our calculations, RPIseq predicts

Fig. 1 Secondary structure occupancy. (A) Example of secondary structure
prediction for the non-coding RNA BC1 as predicted by Vienna RNAfold
(centroid model).90 (B) High values of the secondary structure occupancy
profile28 indicate that base pairing occurs in regions with high propensity to
form stem loops (blue box), while low values are associated with loops or
junctions (pink region). The red curve is the Fourier transform approximation
of secondary structure occupancy.

Fig. 2 Interaction strength. In agreement with experimental evidence,91,92 we predict that the N-terminus of the fragile X mental retardation protein
FMRP (amino acids 1-217) (A) binds to the 50 stem loop of BC1 transcript (nucleotides 1–75), (B) does not interact with the loop region of BC1 transcript
(nucleotides 76–127). Here, the interaction strength algorithm is used to estimate the interaction propensity of the protein–RNA pair.31
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Fig. 3 Long RNA fragmentation. (A) Using the catRAPID fragments algorithm,23,28 we are able to reproduce experimental evidence of the interaction of
hnRNP-L with its own transcript.48 Our predictions indicate that the binding occurs in three different intronic regions located between exons 1–2,
6–7 and 9–10, in agreement with experimental evidence;48 (B) we predict that hnRNP-L protein binds with high affinity (interaction strength = 84%) to
the 30 CA cluster 6A of the hnRNP-L gene and not to (C) the control 6A (interaction strength = 1%), as shown by in vitro splicing assays performed by
Rossbach et al.48

Table 2 Predictions and comparison between predictive methods. Interaction scores of known associations (first line/bold characters) and negative
controls (second line). catRAPID32 and RPIseq34 performances are compared on autogenous interactions89

Protein RNA
catRAPID RPIseq RPIseq

Ref.(interaction strength)/% (RF score) (SVM score)

FMRP FMR1(XM_005262323.1) 30UTR 81 0.60 0.43 42
(1744–1844)
30UTR 1 0.75 0.95
(224–877)

SRSF2 SRSF2(NM_003016.4) Region I/II of terminal exon 84 0.15 0.16 43
(2521–2591)
30UTR 0 0.80 0.88
(2592–2959)

TDP-43 TARDB(XM_005263435.1) CDS 99 0.60 0.90 44
(2271–2366)
CDS 21 0.70 0.97
(2838–3321)

TYMS TYMS(XM_005258137.1) 50Region 99 0.55 0.52 45 and 46
(15-170)
30UTR 18 0.70 0.98
(994–1289)

RPS13 RPS13NC_000011.9 Intron1 99 0.65 0.84 47
(17099186–17098794)
30UTR 4 0.65 0.89
(17095974–17095936)

hnRNP-L hnRNP-L(NC_000019.9) Intron 6 84 0.75 0.88 48
(39332858–39332174)
Intronic region 6A 1 0.85 0.77 48
(39332443–39332174)
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the region 39332858–39332174 to be interacting with hnRNP-L
(RF score = 0.75 and SVM score = 0.88), while the fragment
39332443–39332174 has RF score = 0.85 and SVM score = 0.77.

As reported in Table 2, RPIseq shows an excellent true
positive rate and a high false positive rate. It is likely that,
due to the heterogeneous composition of training datasets,
algorithms show different predictive powers. Nevertheless, it is
advisable to use all the available methods, as comparative
analyses provide precious information for the designing of
new experiments.

The examples used here (Table 2) refer to interactions
occurring between protein and RNA products of the same gene.
catRAPID predictions indicate that a large number of proteins
undergo autogenous associations in intronic/UTR regions.23 As
the maximum levels of mRNA expression are intrinsically
correlated with the aggregation rates of encoded proteins,49,50

autogenous interactions could represent a homeostatic mecha-
nism to regulate expression via feedback loops, thus limiting
protein production and the tendency of proteins to aggre-
gate.51,52 In this regard, it is likely that autogenous interactions
play a major role in regulation of the expression of dosage-
sensitive genes.53,54 At present, we do not know if self-
regulatory mechanisms represent a way of avoiding production
of highly concentrated and potentially toxic protein products23

or derive from a primordial and ribosomal-independent mecha-
nism of translation.55

catRAPID omics express

catRAPID omics express (http://service.tartaglialab.com/page/
catrapid_express_omics_group) is a recent implementation of
our catRAPID omics39 algorithm to investigate the connection
between expression networks and interaction propensities of
protein–RNA pairs24 (Table 1). Our algorithm allows the calcu-
lation of both interaction propensities and expression patterns for
a given protein with respect to the human transcriptome (or the
given RNA with respect to the human nucleic-acid binding
proteome). Using this approach, we found that the interaction
between RBPs and mRNAs is with high statistical significance
related to the probability that the two molecules have linked
patterns of expression in a number of human tissues.24 More
specifically, we observed a strong enrichment in functions related
to cell-cycle control for positively correlated patterns and survival,
growth and differentiation for negatively correlated patterns.
Intriguingly, about 90% of genes in both categories are listed in
the gene index of the National Institutes of Health’s Cancer
Genome Anatomy Project, with a large number of tumor sup-
pressors featuring in the former category and many transcription
regulators appearing in the latter. Our analysis reveals that
modifications in the expression network could trigger aberrant
interactions that lead to pathogenic events, including cancer.24

To show the performance of catRAPID omics express, which
is here released with a web service interface, we collected recent
CLIP experiments56–60 and assessed the ability of the algorithm
to predict interactions between RBPs and their targets with the

available expression data (Fig. 4). catRAPID omics express pre-
dictions achieve significant performances ( p-values o 0.05;
Fisher’s exact test) in remarkable agreement with genome-wide
experimental data.

In these calculations, expression profiles are derived from RNA
sequencing data in 14 human tissues (ArrayExpress: E-MTAB-513).61

The normalized relative abundances are assigned, respectively,
to proteins and RNAs using a homology-based criterion.24

Pearson’s coefficient calculated across expression levels for all
tissues represents the correlation of constitutive expression
levels associated with every protein–RNA pair. The absolute value
of expression correlation is added to the sum of interaction
propensity values to rank the results.39 Quantitative predictions
on the binding propensities of full-length proteins (alternatively,
nucleic acid binding regions) and transcripts (alternatively,
predicted stable secondary structure fragments) are provided
as output.

Concluding remarks

The field of protein–RNA interactions is moving fast and a
number of fascinating hypotheses have been recently formulated on
the evolution of ribonucleoprotein complexes.1,62 Computational
models represent an important source of information that can be
exploited to identify trends, understand the principles of molecular
recognition and design new experiments. Indeed, improvement of
theoretical models and subsequent validation of predictions are
crucial to achieve a better description of the role of coding and non-
coding RNAs in protein networks, especially in human diseases.63

As shown for catRAPID omics express, computational methods
greatly benefit from integration with experimental data coming
from different sources, including lncRNAdb (repository for long
noncoding RNAs),64 NRED (database of long noncoding RNA
expression),65 NONCODE (integrated knowledge dataset of non-
coding RNAs),66 HMDD (human microRNA disease database),67

Fig. 4 catRAPID omics express. We show performances of our new algo-
rithm catRAPID omics express24 on the interactomes of IGF2B1 (insulin-like
growth factor 2 mRNA-binding protein 1), TIA1 (T-cell-restricted intracellular
antigen-1), FUS (translocated in liposarcoma protein), MSI (RNA-binding
protein Musashi homolog 1) and PTBP1 (polypyrimidine tract-binding protein
1 PTB1).9,57–60 The significance of our predictions was assessed using Fisher’s
exact test (the dashed line corresponds to p-value = 0.1) and 0.9-quantile of
rank score distribution as a performance measure. (FUS: 1030 interactions;
MSI: 352 interactions; PTBP1: 1567 interactions; TIA1: 1237 interactions; and
IGF2BP1-3: 3299 interactions).
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OMIM (list of human genes and genetic disorders)68 and GAD
(Genetic Association Database).69

Synergy between computational and experimental approaches
is expected to improve our understanding of ribonucleoprotein
networks. At present, two important challenges can be identified
for future research: (i) development of methods to accurately
predict RNA structure; (ii) integration of existing tools to eluci-
date mechanisms leading to formation of complexes such as
ribonucleoprotein aggregates.

Structural models

catRAPID calculations rely on the Vienna algorithm to generate
accurate predictions of secondary structure ensembles.70 In the
future, it will be crucial to improve performances of computa-
tional approaches to achieve an accurate characterization of
RNA regions involved in protein binding. At present, classical
experimental methods for RNA structure determination include
X-ray crystallography, NMR spectroscopy, cryo-electron micro-
scopy and chemical as well as enzymatic probing. However,
these methods are only applicable to analyze a single RNA per
experiment and are constrained by the length of probed
transcripts.

A relatively new and promising large-scale technique for
structure determination is Parallel Analysis of RNA Structure
(PARS), which is based on deep sequencing of precise RNA
fragments generated by single strand specific enzyme S1 and
double-strand specific enzyme V1.71 A similar approach
exploits high-throughput sequencing of fragments generated
by single-strand specific nuclease P1 and has been applied to
non-coding RNAs in different cells.72 In this case, the Selective
20-Hydroxyl Acylation analyzed by Primer Extension (SHAPE)
chemistry, combined with multiplexed bar coding and next
generation sequencing, was able to measure the structures of a
complex pool of RNAs.73

Methods based on technologies such as PARS and SHAPE
could be very useful for investigation of RNA structure and will
provide new data to train predictive algorithms. Nevertheless,
it is important to mention that the structure measured using
PARSE and SHAPE could be significantly different from that
observed in vivo,74 as proteins influence RNA folding.

Ribonucleoprotein aggregates

Using catRAPID to investigate protein–RNA associations, it has
been observed that several proteins including Muscle-blind-like
MBNL1 and the heterogeneous nuclear ribonucleoproteins
hnRNP-A1, hnRNP-A2/B1, hnRNP-C, hnRNP-D, hnRNP-E, and
hnRNP-G, bind to CGG repetitions in the 50UTR of FMR1.31

These ribonucleoprotein associations are particularly relevant
because they occur in a neurodegenerative disorder called
Fragile X-associated tremor/ataxia syndrome.75,76

How often do RNA molecules promote sequestration of
proteins in the cell? Previous studies have reported cases of
phase separation in the cytoplasm and the nucleoplasm, which,
similarly to lipid-raft formation in membranes, results in the
formation of droplets.77 These droplets define specific, non-
membrane-bound accumulations rich in proteins and RNA

(examples include nucleoli, stress granules and Cajal bodies),
and are in many cases known to be the sites of mRNA storage,
processing, and decay.78,79 Intriguingly, it has been proposed
that the packaging of cytoplasmic mRNA into discrete ribo-
nucleoprotein granules regulates gene expression by delaying
the translation of specific transcripts.80 At present, it is not
possible to state if ribonucleoprotein granules are functional
assemblies or pathological transitions to amyloid structures.79

As a matter of fact, recent experiments showed that several
disease-related mutations of TDP-43 and FUS promote granule
formation.81

What are the molecular features underlying the formation of
ribonucleoprotein aggregates? Theoretical approaches for pre-
diction of protein aggregation could provide insights into this
mechanism.76–78 Indeed, aggregation can be predicted with
high accuracy using physico-chemical features such as hydro-
phobicity, secondary structure propensity and solvent accessi-
bility.82–85 According to our calculations, structural disorder
regions of proteins interact with RNA24 and this could have a
strong impact on aggregation86 and toxicity.87 It is possible that
stable RNA secondary structures, especially those enriched in GC
content, contribute to the spatial rearrangement of disordered
regions of proteins.23 We envisage that simultaneous investiga-
tion of RNA-binding ability and aggregation propensity of pro-
teins will be key to understand pathogenesis of several disorders,
including neurodegeneration and cancer.62

In conclusion, the methods and ideas discussed here have been
developed in an exciting moment of the post-genomic era.61 For
the very first time, experimental and computational approaches
have started to unveil the complexity of our genomes and protein–
RNA pairs emerged as key players in a large number of regulatory
processes.88 It is our hope that the studies presented herein will
inspire other researchers to validate the large-scale models and
generate new hypotheses.
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T. Achsel, A. Pastore and C. Bagni, J. Biol. Chem., 2005, 280,
33403–33410.

92 C. Lacoux, D. D. Marino, P. P. Boyl, F. Zalfa, B. Yan,
M. T. Ciotti, M. Falconi, H. Urlaub, T. Achsel, A. Mougin,
M. Caizergues-Ferrer and C. Bagni, Nucleic Acids Res., 2012,
gkr1254.

Molecular BioSystems Review

Pu
bl

is
he

d 
on

 2
8 

M
ar

ch
 2

01
4.

 D
ow

nl
oa

de
d 

by
 B

ib
lio

te
ca

 d
e 

la
 U

ni
ve

rs
ita

t P
om

pe
u 

Fa
br

a 
on

 0
1/

05
/2

01
4 

11
:0

8:
10

. 
View Article Online

http://dx.doi.org/10.1039/c4mb00099d

