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FIGURE 6. IRP-1 interactions with APP and a-synuclein mRNA. (A) Interaction map of IRP-1 with APP (secondary structure elements are displayed
at the “protein residue index” axis; blue areas indicate experimentally validated interactions). RNA-interaction profiles for IRP-1 associations with (B)
APP and (C) a-synuclein mRNA (blue lines indicate experimentally identified binding regions) (Supplemental Table 1). (D) Interaction strength for
IRP-1 domain 4 region (amino acids 661-889) and putative IRE fragment in a-synuclein transcript (nucleotides 190-252) (Supplemental Table 1).

85%) (Fig. 6D). Our predictions suggest that IRP-1 could be
involved in regulating a-synuclein, which might have impli-
cations for the alteration of iron levels found in PD (Table 1).

Prions and RNA aptamers

Mammalian prions (PrP) are infectious agents causing
neurodegenerative diseases (Prusiner 1998). To date, prion
infectivity is attributed to conversion of the soluble PrP°
into an aggregation-prone structural isoform PrP*® (Pan
et al. 1993). The exact physiological function of PrP® remains
elusive; however, there is an increasing understanding of
the molecular mechanisms underlying PrP¢ pathological
conversion and its interactions with other biological macro-
molecules. Among these, cellular adhesion molecules, nucle-
ic acids, basal membrane molecules, and sulfated glycans
have been reported to interact with PrP and to induce or
modulate conversion into f-sheet-rich structures that shares
many features with infectious PrP (Silva et al. 2011). It has
been proposed that PrP® could undergo specific structural re-
arrangements modulated by binding with specific nucleic ac-
ids molecules, such as highly structured RNAs (Deleault et al.
2003) or RNA aptamers (Mercey et al. 2006).
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Several studies showed that residues 90-141 are crucial for
the conversion from natural to pathological form (Tartaglia
et al. 2005, 2008). Proske et al. (2002) discovered an RNA
aptamer, DP7, which binds with great affinity to an epitope
located within residues 90-141 of hamster PrP (highly con-
served in mouse and human sequences) (Supplemental
Table 1). Here we estimate the binding ability of DP7 to ham-
ster PrP using catRAPID (Methods: Interaction Fragments).
Based on our calculations, the fragment located at residues
104-155 shows the highest propensities to bind to DP7 and
has the largest overlap with the experimental region spanning
residues 90-141 (Fig. 7A; Proske et al. 2002). In agreement
with experimental evidence, we predict that full-length ham-
ster PrP and DP7 aptamer are highly interacting (interaction
strength = 85%) (Fig. 7B; Proske et al. 2002). We also report
very high interaction propensity between residues 90 and 141
of hamster PrP and DP7 aptamer (interaction strength =
99%; RNA interaction strength = 100%), which is consistent
with experimental findings (Methods: Interaction Score)
(Fig. 7C; Proske et al. 2002). In agreement with Proske
et al. (2002), we predict high interaction propensities be-
tween DP7 and mouse and human PrP (Supplemental Fig.
10A-D).
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FIGURE 7. Prion and aptamers. (A) Protein interaction profile for the association of hamster prion protein (PrP) with RNA aptamer DP7.
Interaction strength of DP7 interactions with (B) full-length PrP, and (C) PrP fragment 90-141 (highlighted); (D) Prediction of PrPgy_14; binding
specificity for DP7 (control set of 1000 DP7 single point mutations; Supplemental Table 1; Methods: Interaction Strength).

The analysis of 100 single point mutations on the DP7
aptamer reveals that 73% of variants are predicted to reduce
the ability to bind to hamster PrP (Fig. 7D), while the
remaining 27% increases the interaction propensity (interac-
tion strength in the range from 99% to 100%), thus indicat-
ing that catRAPID is able to capture the specificity of DP7 for
PrP (Methods: Interaction Score). In conclusion, our results
suggest that catRAPID represents a valuable tool for the in sil-
ico screening of RNA aptamers (Table 1).

DISCUSSION

We used our computational approach catRAPID to investi-
gate protein—RNA interactions linked to neurodegenerative
diseases. As summarized in Table 1, we were interested in
understanding the involvement of ribonucleoprotein associ-
ations in a number of regulatory processes as well as disorders
such as PD and AD. We studied the metabolic signature as-
sociated with FXS and analyzed FMRP associations with
SODI and APP, highlighting possible links with ALS and
AD (Davidovic et al. 2011). We investigated the X-chromo-
some disorder FXTAS, which is caused by CGG expansions
in the FMR-1 untranslated region (Sellier et al. 2010) and
characterized key players involved in protein sequestration.
We predicted TDP-43 interactions with several ncRNAs dis-
playing changes of expression levels upon TDP-43 depletion

(Polymenidou et al. 2011) and identified a set of vault-asso-
ciated and natural antisense transcripts that could be linked
to clinical manifestations of TDP-43 proteinopathy (Chen-
Plotkin et al. 2010). We also studied the ability of FMRP
and TDP-43 to regulate their own expression levels through
autogenous interactions, characterizing their binding sites
in great detail (Schaeffer et al. 2001; Ayala etal. 2011). We an-
alyzed the interaction between IRP-1 and APP (Cho et al.
2010) and predicted the interaction between IRP-1 and an
IRE-like region of a-synuclein mRNA, which represents a
link to the iron-pathway deregulation associated with PD
(Olivares et al. 2009). Finally, we investigated the ability of
RNA aptamers to bind to aggregation-prone regions of pri-
ons (Proske et al. 2002), which shows that our theoretical
framework could be useful for the in silico screening of
RNA-based therapeuticals (Table 1).

In this work we introduced the interaction strength algo-
rithm to measure the robustness of our predictions with re-
spect to an “ensemble” of negative controls (e.g., Fig. 5F).
In each case studied, we observed that experimentally validat-
ed associations have significantly higher interaction pro-
pensities than control sets (e.g., Fig. 4). Moreover, to assess
catRAPID’s performances on negative controls, we studied
a number of noninteracting pairs present in literature
(Schaeffer et al. 2001; Itoh et al. 2002; Ayala et al. 2011)
(Supplemental Table 1). We found strong agreement between
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experimental results and our calculations (Figs. 1E, 3B,D, 5E,
7D), which indicates that the use of control sets is very im-
portant to achieve accurate predictions. As shown in Figures
1B,D, 6B,C, 7A, the interaction fragments algorithm is
able to identify binding regions in both protein and RNA
molecules.

We propose catRAPID for predictions of protein—RNA as-
sociations, to flag putative interactions and select candidates
for experimental studies (Table 1). Our method allows pro-
cessing of a large amount of protein—RNA pairs and can
lead to finding previously unknown interactions. Due to
the vastly increased analysis throughput, even whole pro-
tein—RNA networks could be soon investigated without the
need to focus on small subsets. Our methodology provides
a significant amount of new information on protein—-RNA
associations, discovery of which would not be possible with
a purely experimental workflow due to the sheer volume.
Most importantly, our approach works on the intersection
of protein and RNA biology and will help to bridge the gap
between the two disciplines.

MATERIALS AND METHODS

Interaction propensity

We use the catRAPID method to predict protein—RNA interactions
(Bellucci et al. 2011). In catRAPID, the contributions of secondary
structure, hydrogen bonding, and van der Waals’ are combined to-
gether into the “interaction profile”:

|Dy) = as|Se) + ag|Hy) + o |Wy) (1)

The “interaction propensity” ntis defined as the inner product be-
tween the protein propensity profile |¥,) and the RNA propensity
profile [W,) weighted by the “interaction matrix” I:

™= (W[l [V,) 2

The interaction matrix I as well as the parameters as, ay, and ay,
were derived using a Montecarlo procedure under the condition that
interaction propensities 7 take maximal values for associations in
the positive training set and minimal values for associations in the
negative training set:

| max (W IW,) V{rp} €
min (V,[I|¥,) V{rp} €

{ positive training set}
{negative training set}

3

The catRAPID method was trained to predict interaction
propensities of protein—RNA pairs in the range of from 50 to
750 amino acids and 50 to 1500 nt. The algorithm to compute the
interaction propensity with respect to the negative training set (dis-
criminative power) is available at www.tartaglialab.crg.cat/catrapid.
html.

Interaction strength

The concept of interaction strength is introduced to compare the in-
teraction propensity of a protein—RNA pair with a reference set that
has little propensity to bind (random associations between polypep-
tide and nucleotide sequences). For each protein—RNA pair under
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investigation, we use a “reference set” of 10% protein and 10> RNA
molecules. To assess the strength of a particular association, we
compute its interaction propensity m and compare with the interac-
tion propensities 4t of the reference set (total of 10* nonredundant
protein—RNA pairs). Using the interaction propensity distribution
of the reference set, we generate the “interaction score”

. ™ —
Interaction Score = L
o
) A
n=3> (4)
i=1

A
o =43 (& — )
i=1

The number of interactions is A = 10*. From the distribution of
interaction propensities we compute the “interaction strength”

Interaction Strength = P(7r < )
= cumulative distribution function (cdf) (5)

Reference sequences have the same lengths as the pair of interest
to guarantee that the interaction strength does not depend on
protein and RNA lengths. The “protein interaction strength”
and the “RNA interaction strength” are special cases of the inter-
action strength in which only the protein or the RNA sequence is
randomized to generate a reference set. For instance, the RNA inter-
action strength used for the analysis of the TDP43 interactome is the
RNA-binding ability of a protein with respect to a pool of 100 pro-
teins. The algorithm to compute the interaction strength is available
at http://tartaglialab.crg.cat/catrapid.strength.html.

Interaction fragments

In some cases, protein or RNA sequences exceed the size compatible
with our computational requirements, and catRAPID could not be
used to calculate the interaction propensity. To overcome this lim-
itation, we developed a procedure called “fragmentation,” which
involves division of polypeptide and nucleotide sequences into
fragments, followed by prediction of the interaction propensities.
The analysis of fragments is particularly useful to identify regions in-
volved in the binding (e.g., self-interactions of TDP-43 and FMRP).
The fragmentation approach is based on the division of protein and
RNA sequences into overlapping segments:

1
(kb+£)f kh:1,2,...,h
ko f ko =1,2,..,m )
l—(ke+%)f ke=12,....

Where ky, k,,,, and k, indicate the position of fragments, fis their
length and /s the overall sequence length. The number of total frag-
ments is b+ m + e =t < 100 (limited by catRAPID sequence restric-
tions). The maximum number of protein—RNA interactions is 104,
which implies that the ability to identify an experimentally validated
interaction by chance is 107, The list of all the protein—RNA frag-
ment associations is called “interaction map.” “Protein and RNA in-
teraction profiles” are bidimensional projections of the interaction
map onto the protein or RNA positions, respectively. A variant of
the fragmentation algorithm developed to analyze protein interac-
tions with long transcripts has been described in a recent paper
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(Agostini et al. 2012). The algorithms to compute interaction frag-
ments are available at http://tartaglialab.crg.cat/catrapid.fragments.
html.

CGG sequestration propensity

The CGG sequestration propensity is calculated as the interaction
strength multiplied by the protein concentration:

CGG Sequestration Propensity = < Interaction Strength
> x o log(Abundance) (7)

Where <Interaction Strength> = 1/(f —i+ 1) Z{: ; Interaction
Strength (k) is the average interaction strength for CGG repeats
ranging from i =20 to f=200 and a = 1/log(Abundance),,, is the
normalization factor. Protein abundances are retrieved from the
database http://pax-db.org.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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