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2 - Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain

3 - Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain

4 - Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genova, Italy

5 - Department of Biology ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy

6 - Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
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Abstract

Condensation, or liquid-like phase separation, is a phenomenon indispensable for the spatiotemporal reg-
ulation of molecules within the cell. Recent studies indicate that the composition and molecular organiza-
tion of phase-separated organelles such as Stress Granules (SGs) and Processing Bodies (PBs) are
highly variable and dynamic. A dense contact network involving both RNAs and proteins controls the for-
mation of SGs and PBs and an intricate molecular architecture, at present poorly understood, guarantees
that these assemblies sense and adapt to different stresses and environmental changes. Here, we inves-
tigated the physico-chemical properties of SGs and PBs components and studied the architecture of their
interaction networks. We found that proteins and RNAs establishing the largest amount of contacts in SGs
and PBs have distinct properties and intrinsic disorder is enriched in all protein-RNA, protein-protein and
RNA-RNA interaction networks. The increase of disorder in proteins is accompanied by an enrichment in
single-stranded regions of RNA binding partners. Our results suggest that SGs and PBs quickly assemble
and disassemble through dynamic contacts modulated by unfolded domains of their components.
� 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://crea-

tivecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Cells exploit the spatiotemporal confinement for
efficient organization of biochemical reactions.1 In
the complex and crowded intracellular milieu,2 con-
densation in membrane-bound or membrane-less
organelles allows to control concentration and inter-
actions of the reactants.3 These assemblies,
located in both cytoplasm and nucleus, participate
in multiple cellular functions4 including stress
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response, transport channels in the nuclear pore
complex and chromatin reorganization.5

Molecular condensation is currently the subject of
intense investigation and recent advances started to
reveal their composition and inner architecture.3,6,7

Molecular interactions within molecular conden-
sates are not yet understood, but involve proteins
and RNAs.8,9 These assemblies have liquid-like
properties and are commonly formed through a pro-
cess that requires phase separation.10,11 Valency or
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number of interaction sites dictates the contact den-
sity of the molecular network regulating the stability,
organization and composition of the
condensates.10,12

Through helical interactions, canonical and non-
canonical Watson-Crick base-pairing, RNAs
interact with other RNAs and promote phase
separation.13 Yet, technical difficulties in the study
of RNA-RNA contacts currently impede our com-
plete understanding of this phenomenon.14

Protein-protein interactions, and especially prion-
like elements, contribute to condensation by pro-
moting protein associations.10,15 More specifically,
perturbation of the native state16 accompanied by
an increase in structural disorder17 and hydropho-
bicity18 enhance the propensity of proteins to
aggregate.15

Depending on their binding preferences, RNA-
binding proteins (RBPs) interact with either single
or double-stranded regions of RNAs.19 Highly struc-
tured RNAs attract large amounts of proteins thanks
to their intrinsic ability to establish stable interac-
tions.12,20 RNAs can be often scaffolding elements:
whereas a polypeptide of 100 amino acids can inter-
act with one or two proteins, a chain of 100 nucleo-
tides is able to bind to 5–20 proteins.21 Not only
RNA attracts proteins, but also proteins can in turn
contribute to change RNA properties: chemical
modifications such as N1-methyladenosine (m1A)
and N6-methyladenosine (m6A) can modify RNA
structure22,23 and influence the formation of ribonu-
cleoprotein condensates.24,25 Helicases such as
the Eukaryotic initiation factor 4A-I can also alter
RNA structure by opening up double-stranded
regions and altering cellular interactions.26

Here, we used a computational approach to
investigate the interactions and properties of RNA
and protein in the two of the best-known biological
condensates: stress granules (SGs)27 and
processing-bodies (PBs).28 These large assemblies
arise upon viral infection or when chemical and
physical insults occur to cells. They are thought to
form to protect transcripts that would otherwise be
aberrantly processed. More specifically, SGs store
non-translating mRNAs as indicated by translation
initiation factors enriched in the pool of proteins that
compose them, whereas PBs facilitate RNA decay
because of the abundance in RNA decapping and
deadenylation enzymes.29

Proteins7,9 and RNAs27,30 contained in SGs and
PBs are only now starting to be unveiled and their
interaction networks are largely unknown. With the
present systematic analysis, we aim to characterize
how structure influences the interactions sustaining
these biological condensates, including both pro-
teins and RNAs and all its possible combinations
(RNA-RNA, protein-protein and RNA-protein). Our
results show similarities and interconnections
between the most contacted players of both molec-
ular types. We report the intriguing result that RNAs
enriched in SGs and PBs are disordered and form a
2

large number of contactswithRNAs and proteins. At
the same time, proteins enriched in SGs and PBs
are disordered and form a large number of contacts
with proteins and RNAs. Taken together, our data
suggest that structural disorder is a property that dis-
tinguishes dynamic fuzzy-like assemblies such as
PBs and SGs from solid-like aggregates.31,32
Results

RNA structure drives interaction with proteins
in SGs and PBs

SGs and PBs are two of the best-known biological
condensates. They contain multiple proteins whose
concentration changes with stress, cell state and
environmental conditions.9,29 Among them, a small
specific set of proteins essential for their formation
has been found and they are involved in the recruit-
ment of the other components and in sustaining the
condensate. Despite this, there are still uncertain-
ties regarding how the cell regulates their content
and assembly.
We recently reported that protein-RNA

interactions build up the scaffold of phase-
separating organelles10,33 and their selective
recruitment is dictated by RNA physicochemical
properties.12,20 Specifically, we have shown that
RNAs engaging in interactions with many protein
partners are enriched in double-stranded content
(Figure 1(A)).19,20 The origin of this property,
observed with a number of different experimental
approaches, is that double-stranded regions reduce
the flexibility of the polynucleotide chain. Presence
of a stable fold favors the formation of stable and
well-defined binding sites where the protein can
bind. However, our observation does not suggest
that protein binding sites and double-stranded
regions are the same. If a specific interaction occurs
in a small loop at the end of a stem, the overall
region is enriched in double-stranded nucleotides,
although the exact binding could be in a single-
stranded region.
We wondered whether RNA structure drives the

interaction with proteins present in SGs and PBs
as detected in the whole transcriptome
analysis.19,20 Following up on our previous compu-
tational analysis,19,20 we used protein-RNA interac-
tions available from enhanced CLIP (eCLIP)
experiments34 to rank protein associations with
RNAs present in SGs and PBs (Materials and
Methods). We first selected the transcripts with
the largest and lowest amount of protein contacts
from the list of RNA reported in SGs27 and PBs30

(Supplementary Table 1) and then compared their
secondary structure content. We used CROSS35 to
predict the secondary structure properties of tran-
scripts using the information contained in their
sequences and we found that RNAs with more pro-
tein contacts in SGs and PBs are significantly more
structured (Figure 1(B); Materials and Methods).



Figure 1. RNAs enriched in SGs and PBs are less structured and contact a larger amount of proteins. A.
Graphical representation of the relationship between number of protein interactions and double-stranded content of
RNAs. The trend was identified by using different computational and experimental techniques. B. Double-stranded
content dsRNA (CROSS predictions) of RNAs present in SGs and PBs. The RNAs are categorized in two classes:
least- and most-contacted depending on the amount of protein interactions detected by eCLIP. An equal amount of
200 transcripts is used in each class (SGs and PBs, least and most contacted RNAs). Significant differentiation is
found (SG p-value < 0.013 and PB p-value < 0.029, Wilcoxon test). C. Single stranded content ssRNA (dimethyl
sulfate modification, DMS, measured in vivo) for RNAs most and least contacted by proteins in SGs and PBs. RNA
classes follow the definition given in panel B. Significant differentiation is found (SG p-value < 1.15e-34, PB p-
value < 3.19e-35, Wilcoxon test). D. Double stranded content dsRNA (CROSS predictions) for RNAs enriched or
depleted in SGs and PBs. An equal amount of 200 transcripts is used for each category (SGs and PBs, depleted and
enriched RNAs). Significant differentiation is found (SG p-value < 0.006, PB: p-value < 1.88e-54, Wilcoxon test). E.
Single stranded content ssRNA (DMS, measured in vivo) for RNAs enriched or depleted in SGs and PBs. RNA
classes follow the definition given in panel D. Significant differentiation is found (SG p-value < 4.51e-67, PB p-
value < 2.43e-67, Wilcoxon test). F. catRAPID predictions of protein interactions with RNAs enriched or depleted in
SGs and PBs. RNA classes follow the definition given in panel D. Significant differentiation is found (SG p-
value < 3.69e-33, PB p-value < 4.62e-21, Wilcoxon test); G. eCLIP detection of protein interactions with RNAs
enriched or depleted in SGs and PBs. RNA classes follow the definition of panel D. Significant differentiation is found
(SG p-value < 1.44e-06, PB p-value < 0.075, Wilcoxon test). Significance indicated in the plots: * p-value < 0.1, ** p-
value < 0.01 and *** p-value < 0.001.
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CROSS reproduces transcriptomic experiments
such as in vivo click selective 2-hydroxyl acylation
and profiling experiment (icSHAPE)22 and Parallel
Analysis of RNA Structure (PARS)36 with accura-
cies higher than 0.80.37 To assess whether the cal-
culations are in agreement with experimental data,
we used data coming from dimethyl sulfate (DMS)
foot-printing experiments carried out in vitro and
in vivo38 (Materials and Methods). DMS modifica-
tion of the unpaired adenosine and cytidine nucleo-
tides is commonly used for revealing structural
properties of RNA molecules.39 The results are in
complete accordance withCROSS predictions, with
3

the most contacted RNAs being more structured
than the least contacted ones (Figure 1(C) and
Supplementary Figure 1). Although the conditions
in which DMS experiments were performed did not
take into account formation of SGs and PBs, our
results show that for both SGs and PBs the amount
of double-stranded regions is statistically associ-
ated with the number of protein contacts SG’s and
PB’s RNAs can form (Figure 1(C)).
Our results indicate that RNAs establishing

interactions with a large number of proteins12,40

act as scaffolds for the formation of ribonucleopro-
tein complexes,33,41 which suggests that specific



A. Vandelli, F. Cid Samper, M. Torrent Burgas, et al. Journal of Molecular Biology xxx (xxxx) xxx
transcripts could be the ‘hubs’ in the transcriptional
and post-transcriptional layers of regulation.19,20

This observation indicates that RNAs could be
regarded as network connectors or ‘kinetic con-
densers’ sustaining and capturing the different com-
ponents of the biological condensates. Actually,
recent evidence indicates that RNA interactions
with other RNAs occur spontaneously, thus an addi-
tional level exists in the inner regulation of SGs and
PBs architecture.13
RNA enriched in SGs and PBs are less
structured

Since SGs can contain mRNAs from essentially
every expressed gene,27 we decided to study a sub-
set of RNAs that are specifically enriched in SGs or
PBs. Indeed, it is possible to distinguish two subsets
of transcripts, enriched and depleted, depending on
their abundance in SGs and PBs relative to the rest
of the transcriptome (Materials and Methods and
Supplementary Table 1). We stress that the distri-
bution in these groups is independent of the total
transcript abundance or the AU content.42 We also
note that the overlap between SGs and PBs is just
25%, and this percentage varies when comparing
different sets. Despite these differences, enriched
RNAs share similar properties in both cases: they
are composed by transcripts with less translation
efficiency and longer sequences.27,28

Since longer sequences have higher probability
to have a larger number of interaction partners,7,9

we expected to find an enrichment of double-
stranded regions in PBs and SGs.20 However, our
predictions carried out with CROSS indicate that
these RNAs contain more single-stranded regions
than depleted transcripts (Figure 1(D)).
To assess whether the calculations are in

agreement with experimental data, we compared
our predictions with DMS experiments.38 The
results are in complete accordance, with enriched
RNAs beingmore unstructured than depleted RNAs
(Figure 1(E)). Interestingly, the 50 UTRs, CDS and
30 UTRs consistently show a lower amount of struc-
ture, which indicates that the trend identified is par-
ticularly robust (Supplementary Figure 2). We
obtained similar results using another experimental
approach to reveal RNA secondary structure,
PARS (Supplementary Figure 3).36 PARS is an
approach based on deep sequencing fragments of
RNAs treated with structure-specific enzymes43

(Materials and Methods). Again, RNAs enriched
in SGs and PBs have a significantly increased num-
ber of single-stranded regions.
RNAs enriched in SGs and PBs bind a large
amount of proteins

We next investigated protein interactions with
RNAs enriched in SGs and PBs. In this context,
we previously showed that the interactions
between proteins and RNAs could scaffold the
4

formation of phase-separating organelles12,21,33

and the incorporation of RNAs depends on their
physico-chemical properties.19,20 We used the
catRAPID approach to predict RNA interactions
with proteins (Materials andMethods).44,45 catRA-
PID exploits secondary structure predictions cou-
pled with hydrogen bonding and van der Waals
calculations to estimate the binding affinity of
protein-RNA pairs with an average accuracy of
0.78.46,47 For both SGs and PBs, our predictions
indicate that enriched RNAs have a significantly lar-
ger number of interactions with proteins than
depleted RNAs (Figure 1(F)).
To experimentally validate our predictions, we

retrieved protein-RNA interactions available from
eCLIP experiments (Materials and Methods).34

On the same set of proteins investigated with
catRAPID, we observed that RNAs enriched in
PBs and SGs have an increased number of protein
partners (Figure 1(G)).
Although predictions and experiments used in our

analysis do not consider the cellular context in
which SGs and PBs are formed, our models are
based on physico-chemical properties of the
molecules involved and they are therefore
expected to have general validity.19,20 Intriguingly,
RNAs enriched in SGs and PBs establish a dense
network of contacts with proteins despite their
increase in single-stranded content. This contra-
dicts the trend previously identified and suggests
that these RNAs might have an interaction network
that deviate from those characterizing the average
transcriptome.19,20

Single stranded regions are involved in RNA-
RNA interactions

Even though protein interactions correlate with
the amount of double stranded regions found in
them (Figure 1(B)), it is possible that other RNA
properties are involved in different interactions.
We hypothesized that RNAs enriched in SGs and
PBs may interact among themselves through a
mechanism of base-pairing recognition in single-
stranded regions.48 To investigate if an increase in
single-stranded regions is a property favouring con-
tacts among RNAs, we compared the structures of
RNAs that build a larger number of contacts with
RNAs and those more prone to interact with pro-
teins (Figure 2(A)). The analysis of the DMS struc-
ture shows that the RNAs interacting with a larger
number of RNAs are more single-stranded.
Using IntaRNA to predict RNA-RNA interactions

(Materials and Methods),48 we then compared
the binding ability of themost enriched and depleted
RNAs in SGs and PBs. Our results clearly show that
enriched RNAs are more prone to interact with
RNAs (Figure 2(B)).
We then searched available experimental data to

validate our predictions. To this aim, we used the
RISE database containing RNA-RNA interactions
assessed through high-throughput approaches.49



Figure 2. RNAs enriched in SGs and PBs are less structured and contact a larger amount of RNAs. A.
Single-stranded content ssRNA (DMS measured in vivo) of RNAs enriched in protein interactions (eCLIP
experiments) and RNAs enriched in RNA interactions (RISE database). An equal amount of 200 transcripts is
used in each category (SGs and PBs, protein and RNA binders). Significant differentiation is found (SG p-
value < 0.091, PB p-value < 0.007, Wilcoxon test). B. IntaRNA predictions of the energies associated with RNA-RNA
interactions. An equal amount of 2500 predicted interactions are used in each category (50 transcripts from SGs and
PBs, enriched and depleted interacting with 50 random human RNAs). Significant differentiation is found (SG p-
value < 2.54e-108, PB p-value < 1.57e-69, Wilcoxon test). For each plot the interaction bonding energy is reported
(kcal/mol). C. Number of RNA-RNA interactions (RISE database). An equal amount of 200 transcripts is used in each
category (SGs and PBs, enriched and depleted). Significant differentiation is found (SG p-value < 1.54e-19, PB p-
value < 5.89e-09, Wilcoxon test). Significance indicated in the plots: * p-value < 0.1, ** p-value < 0.01 and *** p-
value < 0.001.
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By counting the number of binding partners that
each transcript has with other transcripts (Materials
and Methods), we found that the enriched RNAs
are associated with a large number of binding part-
ners (Figure 2(C)). Altogether, our results indicate
that enriched RNAs are more single-stranded and
base-pair with multiple RNAs to establish a larger
number of contacts.
Thus, RNAs enriched in SGs and PBs are able to

establish a dense network of contacts not just with
proteins but also with RNAs. This result suggests
that RNAs in SGs and PBs could act as central
players sustaining their inner architecture.
Enriched RNAs are populated by master
regulators of protein- and RNA-binding

To understand how enriched RNAs are able to
create a dense network of contacts, we studied
their molecular composition. Starting from the pool
of enriched transcripts, we calculated the
intersection between the RNAs showing the
largest and smallest amounts of protein contacts
(eCLIP experiments)34 against the RNAs showing
the largest and smallest amounts of RNA contacts
(RISE database).49 This approach is useful to
reveal the existence of a particular subset spe-
cialised in binding specific molecular types. The
results are shown in Supplementary Figure 4,
where we report the intersection of the strongest
and poorest protein and RNA binders, comparing
5

them with a control. Despite the vast majority of
RNAs does not show significant preference for a
certain molecular type, we detected an enrichment
in the set of RNAs that binds extensively both pro-
teins and RNAs (Supplementary Table 3). Thus,
these data confirm that the interactivity of the RNAs
enriched in SGs and PBs with boths proteins and
RNAs is significantly higher than the other tran-
scripts, supporting their importance in sustaining
the network of these biological condensates.
SGs and PBs protein pairs are enriched in
structural disorder

We next investigated the properties of proteins
accumulating in SGs and PBs to better
understand how they contribute to their interaction
network. First, we analyzed how structure affects
the formation of protein pairs in these biological
condensates in comparison with the rest of the
proteins.
We retrieved from BioGRID50 all binary protein-

protein interactions (PPIs) involving proteins
located in SGs and PBs (Materials and Methods
and Supplementary Table 2) and, as a control,
an equal amount of PPI with interactors that were
not found therein (extracted multiple times, Supple-
mentary Figure 5). In this analysis, we measured
the amount of disorder available using MobiDB
(mean disHL disorder score for each pair)51

(Figure 3(A) and Supplementary Figures 5 and
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6). In addition, we also measured the amount of dis-
order of single condensates and non-condensates
proteins (Supplementary Figure 7). Both analyses
indicated that proteins from PBs and SGs are more
disordered than the rest of the proteome.
Thus, in addition to RNAs with increased content

of single-stranded regions, our results indicate that
SGs and PBs contact networks are enriched in
proteins with a lower amount of structure. Since it
is known that structural disorder promotes
allosteric interactions and favours binding with
many protein partners,52 we speculated that SG
Figure 3. Protein interaction in SGs and PBs is lead
interactions associated with SGs and PBs (BioGRID databas
protein pairs (9336 for SG, 3920 for PB) with the non-conden
pair was retrieved from the MobiDB database (disHL score)
157, PB p-value < 2.21e-33, Wilcoxon test). B. Number of p
proteins (BioGRID database). For each organelle (SG and P
with the non-condensate control is used. Significant diffe
value < 1.51e-58, Wilcoxon test). C. catRAPID predictions of
double stranded in SGs and PBs and calculation of mea
transcripts is used in each category (SGs and PBs, most s
disorder content of the interacting proteins for each RNA
differentiation is found (SG p-value < 0.056, PB p-value < 0.0
interacting with SG and PB most single stranded and doubl
used in each category (SGs and PBs, most single-stranded
of the interacting proteins for each RNA is retrieved from M
(SG p-value < 2.89e-17, PB p-value < 4.97e-19, Wilcoxon
found in our analysis. Condensate enriched RNAs and prote
that involves both other RNAs and proteins. This leads to the
crossed “hubs” recruiting and sustaining the different compon
* p-value < 0.1, ** p-value < 0.01 and *** p-value < 0.001.
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and PB proteins could have a large number of
contacts.
To this aim, we took proteins from SGs and PBs

and as a control an equal number of proteins that
were not found therein (extracted multiple times,
Supplementary Figure 8). We then counted how
many interactions were reported in BioGRID
(Figure 3(B) and Supplementary Figure 8).50

Our results indicate that SG and PB proteins have
a significantly larger number of partners, suggesting
that they have a denser contact network than the
rest of the proteome. Therefore, we found an equiv-
by disorder. A. Disorder content of protein–protein
e). For each organelle (SG and PB), an equal number of
sate control is used. The mean disorder content of each
. Significant differentiation is found (SG p-value < 1.05e-
rotein–protein interactions associated with SGs and PBs
B), an equal number of proteins (586 for SG, 231 for PB)
rentiation is found (SG p-value < 3.36e-126, PB p-
protein interactions with RNAs most single stranded and
n proteins disorder content. An equal amount of 200
ingle-stranded and double-stranded RNAs). The mean
is retrieved from MobiDB (disHL score). Significant

67, Wilcoxon test). D. Disorder content of eCLIP proteins
e stranded RNAs. An equal amount of 200 transcripts is
and double-stranded RNAs). The mean disorder content
obiDB (disHL score). Significant differentiation is found
test). E. Graphical representation of interaction patterns
ins are responsible for the creation of a contact network
hypothesis that granule proteins and enriched RNAs are
ents of SGs and PBs. Significance indicated in the plots:
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alence between RNAs and proteins enriched in
SGs and PBs, in which both are characterized by
a larger number of contacts.

Disorder proteins in SGs and PBs interact
more with non-structured RNA

Since RNA binding proteins (RBPs) contain
disordered regions,53 and SG and PB contact net-
works are enriched in disordered proteins, we
investigated which type of structural properties reg-
ulate the interactions between RNAs and proteins.
Based on the increased amount of single-stranded
regions in enriched RNAs and their capacity to form
a larger number of interactions with proteins, we
expected an increased amount of disorder in RBPs.
To test this hypothesis, we analyzed the least and
most structured RNAs (data from DMS measured
in vivo)38 in SGs and PBs and measured the disor-
der content (disHL score from MobiDB) of the inter-
acting proteins51 (Materials and Methods). In this
analysis we focused on proteins that bind to RNA
as predicted by catRAPID and for which the eCLIP
interactome is available.34 The analysis shows that
single-stranded RNAs in SGs and PBs are prefer-
entially contacted by disorder proteins (Figure 3
(C)). The same result was obtained considering
interactions from eCLIP experiments, which con-
firms the validity of our predictions (Figure 3(D)).
In the same way, this analysis, carried out only on
the RNAs enriched in SGs and PBs, also repro-
duces this trend (Supplementary Figure 9).
From two independent points of viewwe arrived at

the same conclusion about the organization of
molecules contained in SGs and PBs (Figure 3
(E)). Enriched RNAs, which are more single-
stranded, form a larger number of interactions with
RNAs but also have a strong potential to interact
with proteins. Disordered proteins are enriched in
SGs and PBs, have a larger number of PPIs, but
also can form more contacts with single-stranded
RNAs. So, the two molecular sets that we detected
as the most interacting, RNAs and proteins, are
both depleted in structure, and form strong
interactions between them. This finding indicates
that proteins and RNAs in SGs and PBs act
together as “hubs” that recruit and sustain
the different components of the assemblies
(Figure 3(E)).

Discussion

We previously observed that RNAs enriched in
double-stranded regions attract a large number of
proteins.19,20 The origin of this trend, also identified
in SG and PB analyses, is that double-stranded
regions favor stable interactions with proteins by
reducing the intrinsic flexibility of polynucleotide
chains.19,20 While for each amino acid residue there
are two torsional degrees of freedom, RNA
conformational space is greater - for each
7

nucleotide residue there are seven independent tor-
sion angles.
Here, we report the novel result that RNAs

enriched in SGs and PBs contain single-stranded
regions that increase the structural disorder. Since
recent reports indicate that single-stranded RNAs
have strong ability to act as scaffolds of SGs and
PBs,13,30 we focused our analyses on their interac-
tions with proteins and RNAs.
We first found that RNAs enriched in single-

stranded regions are prone to engage in RNA-
RNA contacts. This result is not unexpected since
single-stranded transcripts are able to base-
pair48,54 and, by doing so, can establish a network
of stable interactions. We note that the analysis of
RNA-RNA interactions does not take into account
the cellular context in which SGs and PBs are
formed, thus our results are compatible with a sce-
nario in which specific transcripts are highly prone
to interact to quickly promote molecular
condensation.13

In parallel, the analysis of the SGs and PBs
protein interaction networks revealed that proteins
enriched in disordered elements form a larger
number of contacts with other proteins. This result
is very well in line with recent reports indicating
that unstructured regions modulate the formation
of phase separated assemblies.31 Indeed, phase
separation is a widespread phenomenon in the
cell55 and disordered interactions greatly contribute
to the assembly formation.56 By reporting that
single-stranded RNAs preferably contact disorder
proteins, we extended the concept of “fuzziness”
to RNA molecules. Our work leads to the intriguing
result that the two molecular sets identified as the
most interacting in the proteome and transcriptome
are both depleted in structure and bind one to the
other. Thus, specific elements in proteins and RNAs
have the ability to recruit and sustain all the compo-
nents of SGs and PBs (Figure 3(E)).
In conclusion, our work suggests that there is not

only great diversity in the interaction partners (RNA-
RNA, protein-protein, and RNA-protein) but also in
their binding modes.57,58 In this complex scheme,
RNA ability to induce phase separation can have
an impact on both ordered and disordered proteins:
while structural elements can irreversibly sequester
globular proteins,12 disordered regions dynamically
engage in interactions that lead to phase separa-
tion.59 Our study shows that the inner architectures
of SGs and PBs are intrinsically governed by RNAs
and proteins with an increased amount of struc-
turally disordered domains. Thanks to the dynamic-
ity of these regions, protein-RNA complexes are
able to assemble and disassemble without the need
of strong efforts by the cell. RNA-RNA interactions,
at present poorly investigated, are expected to
greatly contribute to establishing molecular associ-
ations within SGs and PBs.13 Indeed, RNA mole-
cules are versatile platforms1,40 capable of
interacting with all other molecules,19 thus
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promoting the efficient coordination of transcrip-
tional and post-transcriptional layers of regulation.20
Materials and methods

SG and PB transcriptomes

SG transcriptome was collected from Khong et al.
27. The data was generated through RNA-
sequencing (RNA-seq) analysis of purified SG
cores and single-molecule fluorescence in situ
hybridization (smFISH) validation. The PB tran-
scriptome was retrieved from Hubstenberger et al.
30; in which a fluorescence-activated particle sorting
(FAPS) method was used to purify cytosolic PBs
from human epithelial cells. In our statistical analy-
sis, we applied filtering and retained only RNAs with
an experimental p-value < 0.01. Within the tran-
scriptome, we distinguished two subsets of tran-
scripts depending on their abundance with respect
to the cell transcriptome: enriched (fold-change
>=2) and depleted (fold-change<=0.5).
SG and PB proteomes

SG proteome data was retrieved from
experiments in various stress conditions and
different cell types7,9,60 for a total of 632 proteins.
The first dataset was obtained purifying SG cores
from Sodium Arsenite (NaAsO2) stressed U-2 OS
cells using a series of differential centrifugations
and then affinity purification of GFP-G3BP. The
second dataset was obtained using a combination
of ascorbate peroxidase (APEX)-
mediated in vivo proximity labeling with quantitative
mass spectrometry (MS) and an RBP-focused
immunofluorescence (IF) to identify SG proteins in
neuronal and non-neuronal cells and under different
types of stress conditions (heat shock, ER stress
and oxidative stress). The third dataset employs
systematic in vivo proximity-dependent biotinylation
(BioID) analysis to identify core components of SGs
and PBs. PB proteome data was retrieved combin-
ing two studies30,53 for a total of 259 proteins. In the
first study, a fluorescence-activated particle sorting
(FAPS) method was developed to purify cytosolic
PBs from human epithelial cells, while the second
dataset is the one mentioned before, which identi-
fied core proteins for both PB and SG using BioID
analysis.
RNA secondary structure prediction

We predicted the secondary structure of
transcripts using CROSS (Computational
Recognition of Secondary Structure).35 The algo-
rithm predicts the structural profile (single- and
double-stranded state) at single-nucleotide resolu-
tion using sequence information only and without
sequence length restrictions (scores > 0 indicate
double stranded regions). The obtained scores are
8

then averaged to obtain a secondary structure
propensity score for each transcript.

RNA secondary structure measured by DMS

Data on RNA structural content measured by
dimethyl sulfate modification (DMS) in vitro and
in vivo conditions were retrieved from Rouskin
et al. 38. The number of reads of each transcript
was normalized to the highest value (as in the orig-
inal publication) and averaged.

RNA secondary structure measured by PARS

To profile the secondary structure of human
transcripts, we used Parallel Analysis of RNA
Structure (PARS) data.36 To measure PARS struc-
tural content for each transcript, we computed the
fraction of double-stranded regions over the entire
sequence. Given the stepwise function #(x) = 1
for � > 0 and #(x) = 0 otherwise, we computed
the fraction of structured domains as:

PARSstructuralcontent ¼ 1

l

Xl

i
#

V ðiÞ
SðiÞ

� �

where V(i) and S(i) are the number of double- and single-
stranded reads.
To measure the secondary structure content of

the human transcripts 50- and 30- UTR and CDS,
we retrieved the corresponding locations of the 50-
and 30-UTR from Ensembl database and repeated
the same procedure described above simply
considering only the corresponding part of the
sequence.

Protein-RNA interaction prediction

Predicted interactions with human proteins were
retrieved from RNAct,47 a database of protein-
RNA interactions calculated using catRAPID
omics,61 an algorithm to estimate the binding
propensity of protein-RNA pairs by combining sec-
ondary structure, hydrogen bonding and van der
Waals contributions.44 As reported in the analysis
of about half a million of experimentally validated
human interactions,47 the algorithm is able to sepa-
rate interacting vs non-interacting pairs with an area
under the ROCcurve of 0.78.62 The output is filtered
according to the Z-score column, which is the inter-
action propensity normalised by the mean and stan-
dard deviation calculated over the reference RBP
set. For our analysis, we considered only predicted
interactions with a Z-score > 1.

Experimental data on Protein-RNA interactions

RNA interactions for 151 RBPs were retrieved
from eCLIP experiments63 performed in K562 and
HepG2 cell lines. In order to measure the fraction
of protein binders for each transcript, we applied
stringent cut-offs [�log10(p-value) > 5 and � log2(-
fold_enrichment) > 3] as in previous work.63 Fur-
thermore, in case of interactions established in
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one cell line, only interactions seen in 2 replicates
were retained, while in case of two cell lines, only
interactions seen in at least 3 out of 4 replicates
were retained.

RNA-RNA interactions predictions

RNA-RNA interactions were predicted using the
stand-alone IntaRNA software,48 a program for
the fast and accurate prediction of interactions
between two RNA molecules. It has been designed
to predict mRNA target sites for given non-coding
RNAs, such as eukaryotic microRNAs (miRNAs)
or bacterial small RNAs (sRNAs), but it can be used
to predict other types of RNA-RNA interactions. For
each predicted RNA-RNA interaction we retrieved
the most optimal one and considered the associ-
ated interaction energy.

Experimental data on RNA-RNA interactions

Information about human RNA-RNA interactions
were retrieved from RNA Interactome
from Sequencing Experiments (RISE) database.49

RISE is a comprehensive repository of RNA-RNA
interactions that mainly come from transcriptome-
wide sequencing-based experiments such as
PARIS; SPLASH, LIGRseq, and MARIO, and tar-
geted studies like RIAseq, RAP-RNA, and CLASH.
Currently it hosts 328,811 RNA-RNA interactions
mainly coming from three species (human, mouse,
yeast). Human RNA-RNA interactions were filtered,
and we retrieved only those in which both partners
had an available Ensembl ID.

Experimental data on protein-protein
interactions

We used BioGRID (version 4.2.193) for
experimental data on protein-protein interactions
data.50 BioGRID is a biomedical interaction reposi-
tory with data compiled through comprehensive
curation efforts, and it contains protein and genetic
interactions, chemical interactions and post transla-
tional modifications from major model organism
species. We used BioGRID to retrieve protein-
protein interactions involving condensates proteins
against a control. To further strengthen our results,
our analyses were done considering both the entire
available human BioGRID interactome and physical
interactions.

Protein disorder information

Information about human protein disorder
predictions were retrieved from MobiDB database
(version 4.0)51; that contains several data resources
and features for protein disorder. Structural and
functional properties of disordered regions are
based on third party databases and a set of predic-
tion methods, which are assembled to provide a
comprehensive view of properties of disordered
regions at the residue level. From the whole set of
9

predictive methods, we selected scores obtained
with DisEMBL tool with hot loops threshold (DisHL),
developed for the prediction of loops with a high
degree of mobility, considered important for the def-
inition of protein disorder.64
Statistical analysis

To assess the significance of the different trends
throughout the analysis, we used the Wilcoxon
rank sum test (two-sided). It is a non-parametric
test that can be used to compare two independent
groups of samples. In order to have analysis with
balanced groups, for each comparison performed
in our study we used the same number of RNAs/
proteins for each category, except when stated
otherwise.
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